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1 Introduction

In the first 18 months we have defined and characterised the SVEs that are of relevance
in the context of the project. Depending on the character of the SVE different strategies
have been applied. These have been described in journal articles [Pauwels and Van
Hulle (2006), Pauwels et al (2007b), Kalkan et al (accepted), Calow et al (accepted)],
conferences contribution [Baseski et al 2007, Pauwels et al (2007a)], book chapters
[Chumerin and M. Van Hulle (2007)] as well as in submitted work [Krueger et al.
(submitted), Pugeault et al. (to be submitted)] or technical reports [Kalkan et al. 2007a,
Kalkan et al. 2007b, Pugeault et al. 2007]. These works are given as appendices of this
deliverable (Appendix A- Appendix L).

The following text gives an outline of our work on SVEs. For details we refer to the
publications mentioned above. In section 2, we specify the SVEs we are interested in
while in section 3, we give details about the algorithms we use for their extraction.

2 Specifications of SVEs

SVEs are defined on different levels of abstraction that then become related to SAEs on
comparable levels (see Fig. 1). For example, low level SVEs such as the flow rate can be
directly matched to continuous low-level SAEs such as velocity and steering angle
control. SVEs of higher level of abstraction are for example crossings that require a
more elaborated and abstract action and decision making process such as stopping,
looking to the left and right, deciding about the risk to cross the street, etc..

We distinguish between Automatic Driving Conditions, in which vision controls action
by means of closed-loop circuits, and Intentional Driving Situations, in which decisions
have to be taken. Examples for Automatic Driving Conditions are straight driving, tail
gaiting, curve taking, and stopping; whereas Intentional Driving Situations encompass
corner taking, overtaking, obstacle avoidance (partly an automatic task!), and lane
changing.

Processing Unit/Agent

Sensor Domain Action Domain
[

Level 1 Level 1
Level 2 evel 2
| 4 ¢ Y \ v N § NNy |
/ ........ /‘t ....... ¢ ...... & .............. \ ........ \ / ........ /Jr ....... ¢ ...... L .............. \ ........ \
‘ Level n H Level n

Fig. 1: Abstract view of an agent. The horizontal arrows (in red) indicate where linkage
between sensor and action domain can take place. The vertical arrows indicate that sensor and

action events must be seen in a certain context, which can be given by higher, or lower level



information.

Table 1 lists the different Structured Visual Events along with associated Action Events

and Learning Circuits.

Table 1: Specification of SVEs

Structured Visual Events SAE

1 Motion and Stereo-based Events

la Flow rate Straight driving

1b Time to contact (relative speed or looming) tailgating,
Stopping

Ic Heading Curve taking

1d Curved flow lines Curve taking

le Distance to objects Straight driving,
tailgating,
Stopping

2 Independently Moving Objects

2a Number of IMOs tailgating,
Stopping

2b Direction and speed of IMO tailgating, Stopping

2c Time to contact / Distance to objects tailgating,
Stopping

2d Identity (car, truck, (motor)cycle, pedestrian) Tailgating,
Stopping

3 Road-based information & Spatial layout of the street

3a Curvature and as derivatives: distance from beginning of the Curve Taking

curve and tangent point

3b Lane outline and width Straight driving,
Curve taking

3c Distance to lane (road) edges Straight driving,
Curve taking

3d Intersections Stopping

3e Physical narrowing Slowing down,
precise navigation

4 Objects

4a Tail lights tailgating, Stopping

4b Traffic signs Straight driving,
Stopping

4b Traffic lights Straight driving,
Stopping




3 Extraction of SVEs

According to the different SVEs described in table 1, we use different strategies for the
extraction of SVEs that are briefly described in this section. In section 3.1, the
extraction of motion and stereo events is outlined, in particular the ego-motion of the
car. This work has been published in [Calow et al. (in press), Appendix B; Pauwels and
Van Hulle (2006), Appendix H]. The extraction of independently moving objects
(IMOs) is described in section 3.2. Related publications are [Pauwels and Van Hulle
(2007a), Appendix I; Pauwels et al. (2007b), Appendix J]. In section 3.3, we describe
the extraction of road based events and objects. Work addressing this issue has
been/will be published in [Kalkan etal. (in press), Appendix D; Baseski et al. (in
press), Appendix A; Chumerin and M. Van Hulle (in press), Appendix C; Krueger et al.
(submitted), Appendix G; Pugeault et al. (submitted), Appendix K; Pugeault et al.
(submitted), Appendix L; Kalkan et al. (2007b), Appendix E].

3.1 Motion and Stereo-based Events

Motion and stereo algorithms (see Sabatini et al 2007 for the algorithms used within
Drivsco) provided present optic flow and depth maps from which flow rate, curved flow
lines and depth of objects are derived. Time-to-contact can either be derived directly
from optic flow maps or indirectly from object-based vision within the framework of
IMO detection (see below).

Concerning heading, we have provided significant advances in the respective
frameworks of the DRIVSCO proposal. With regard to the proposed analysis of the
statistics of optic flow fields, we have conducted a new study dedicated to the
measurement and the analysis of the statistics of optic flow generated on the retina
during ego-motion through natural environments. We investigated the dependencies of
the local statistics of optic flow on the environmental depth-structure, the ego-motion
parameters and the position in the field of view. In order to measure these dependencies
we estimated the mutual information between correlated data sets based on kernel based
density estimation methods (Calow and Lappe, accepted, Appendix B). Finally, we
investigated a possible link between the statistics of optical flow and receptive field
properties of motion processing neurons of the Middle Temporal Area (area MT) of the
primate brain.

Furthermore, a new algorithm has been developed for the computation of egomotion
(Pauwels and Van Hulle (2006), Appendix H). Egomotion is a crucial mid-level visual
entity, as it constitutes the base for time-to-contact estimation, heading estimation, and



independent motion segmentation. This algorithm is particularly robust to local minima,
while at the same time retaining the accuracy of optimal algorithms. Local minima are
an important nuisance factor in the presence of independently moving objects.

Video from car-mounted cameras is particularly sensitive to jitter. Our optic flow
algorithm relies on temporal consistency, which is disturbed by such instability. To
compensate for this, we have developed a novel stabilization technique that is integrated
within the optic flow algorithm (Pauwels and Van Hulle (2007b), Appendix J).
Contrary to existing techniques, it does not rely on simplifying assumptions regarding
the scene layout or type of camera motion. Our technique greatly improves the quality
of the obtained optic flow.

3.2 Independently Moving Objects (IMOs)

The system we have developed for independent motion detection fuses optic flow, self-
motion, and stereo disparity. In theory, the combination of these cues allows for the
detection of all types of independent motion: those with object heading different from
observer heading, those with identical direction and sign of relative heading, and those
with identical direction but opposite sign of relative heading (the most difficult case).
We are developing a unified approach that can detect all three types. Our approach is
based on an independence hypothesis about the scene layout provided by the cues,
namely the structure estimated from motion and the structure estimated from stereo.
Both measures are combined in the motion field equation [Thompson and Pong (1990)].
Based on inconsistencies therein, a measure of independent motion is obtained. Figure 2
illustrates the computation of this measure.

] structure
left right from stereo

optic flow structure
from motion

Fig. 2: Overview of the independent motion detection method.



Overview of the independent motion detection method:

Two depth maps are extracted, one from optic flow and egomotion (self-motion), and
the other from stereo disparity. In Fig.2 above, distance is colour-coded from blue
(close) to red (far). After robustly mapping both maps onto each other, the remaining
discrepancies roughly indicate the position of the moving objects (the cars in the
figure). From these discrepancies, a measure of independent motion that is invariant to
self-motion and environment structure is obtained. This invariance allows for temporal
integration and noise-reduction at the final detection stage. A continuous stream of
high-quality optic flow is required to enable this temporal integration. Video
stabilization is therefore of crucial importance, and two methods have been specifically
designed in the context of IMO detection. The first method [Pauwels et al. (2007b),
Appendix J] not only improves the reliability of the optic flow, but also simplifies the
computation of egomotion by reducing the number of parameters, consolidating
information near the fovea, and increasing the number of reliable flow vectors. The
second method [Pauwels and Van Hulle (2007a), Appendix I] was designed to deal with
highly complex combinations of camera motion and IMOs. It has been shown to greatly
increase optic flow density and reliability, even in situations of unstable camera motion
in a scene that is dominated by moving objects.

Figure 3 contains a few example scenes with the detected independently moving regions
marked in yellow. The locations corresponding to the moving objects are clearly marked
on all occasions.

Once the independently moving regions have been identified, they can be tracked in
time and disambiguated. This allows for a finer description of certain attributes of the
moving regions. Examples are distance, speed, identity (car, person, bike). This is the
subject of deliverable 6.2 and has been also described in [Chumerin and Van Hulle
(2007)].

Fig. 3: Independent motion detection resullts.



3.3 Road-based Information and Object-based Events

In Ecovision (Ecovision, 2001-2003), we have derived a representation which extracts
semantically rich information in terms of local multi-modal primitives (Kriiger et al.,
2004, Krueger et al (submitted), Appendix G). Multi-modal primitives provide generic
information that can be applied to different kinds of problems in the context of scene
analysis. However, it requires a significant amount of processing power, which will be
done largely on FPGAs (WP1-WP3). Here, we will show that we can tackle different
problems such as lane detection, traffic sign localization and obstacle avoidance within
this representation

Road based information can also be represented by methods where vision procedures
are very much designed towards a specific application. This can be very efficient and is
used to detect the curvature of the lane markers and to extract the ground plane. In this
context, we have developed a very fast lane marker detection system that approximates
the lane as polynomials and by this gives curvature information as well as a ground
plane detection system. These are described in section 3.3.2.

3.3.1 SVEs Defined by Relations of Condensed Semantic Descriptors

| scene description I
| objects/SVE I
I
I
I

Based on the symbolic multi-modal
descriptors (Krueger et al. (submitted),
Appendix G) developed mainly in the course
of the ECOVISION project, we investigated an
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I
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Fig 4: Proposed symbolic hierarchy. linear filtering and a non-linear filtering
stage, 2D symbolic description, 3D
symbolic description, 3D groups, 2D-3D
contours, parts, objects, and finally scene descriptions. The higher levels can be

related to textual descriptions, allowing for semantic reasoning.



* In this hierarchy, bottom-up and top-down processes take place (see work on the
signal-symbol loop in WP 3).

e This representation is rich because it covers 2D and 3D geometric as well as
appearance based information. Different sources of information can be used
according to its reliability and adequacy for the task at hand.

* Scene structures are represented not only as sets of local features, but also in terms
of relations between entities at different levels of the hierarchy - higher level
relations allowing for a making semantics explicit close to a textual description of
such structures.

The Structured Visual Events (SVE) discussed herein can then be described in terms of
such high level relations on their geometry and aspect. This implies the assumptions
that the SVEs structures can be suitably represented as sets of primitives. Examples of
valid SVEs are lane markers, traffic signs, obstacles, etc. The SVEs are defined in three
steps: first, the primitives are extracted (Kriiger et al. (submitted), Appendix G); second,
locally collinear primitives become grouped and finally connected (see Fig. 6b and c).
Additional relations between 2D and 3D primitives are defined to express relevant
structural properties: co-planarity, co-colority, and parallelism — they are detailed in
(Kalkan et al., 2007, Appendix E), see also figure 5. A first attempt for this has been
described in (Pugeault et al., 2007, Appendix K) which becomes currently refined by a
more global parameterization of semi-global 2D and 3D entities. Such descriptions are
a form of “Gestalts” that can then be combined, matched against databases of known
objects, and interpreted in the driving context. As shown in Fig. 6d, we have already
achieved first results in scene interpretation using these Gestalts.

The semantic richness of the early cognitive vision system allows for a high level
description of objects in terms of Gestalts properties, and of their relations in terms of a
rather small set of properties expressed in a language-like way (two examples are given
in Fig. 6d). Many objects in a traffic environment have well defined properties, e.g.,
street markings have a set width and distance to each other and traffic signs have a
defined colour and shape. For example, in Fig. 6d the road is defined by two lanes
(corresponding to Gestalts that were extracted in a bottom-up procedure) which are co-
planar, parallel, and have a certain distance while the lane itself are defined by other
attributes such as co-colority and co-planarity.

This prior knowledge of relevant scene structures properties can be used to search for
them effectively . Since the bottom-up process that generates the Gestalts divides the
scene in a relatively low order set of high level entities, an identification of objects by
model knowledge can be performed rather fast. Note that this will also allow to draw
correlations between SVEs and SAEs at different levels of abstraction (see Fig. 1), e.g.,
the lane level (e.g., lane following) and the road structure level (which can involve
higher level decision processes). We have obtained first results (see Baseski et al. (in
press), Appendix A) supporting further investigation of this approach scheduled for the



b) co-planarity

il ol

c) co-colority

d) collinarity /f i

Fig. 5: Example of the relations that can be drawn between primitives. a) the distance between
two primitives, using Euclidian and Mahalanobis distances. Each image shows, for one
reconstructed primitive, all primitives that are at a distance of 120cm, indicated by the red
lines. This is shown for nearby and far primitives, and using an Euclidian or Mahalanobis
criterion. For nearby primitives both criteria pairs successfully primitives on both sides of the
road, whereas for primitives farther away the Euclidian criterion pairs significantly less
primitives. In b) the red lines indicate co-planar primitives (this illustrate the relative weakness
of the coplanarity constraint when used on its own). In c) red lines show co-color primitives;
and d) collinear primitives. In all case, red lines show all primitives paired with one chosen
primitive.
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Circular Piece 1
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Radius : 178 mm

Normal : (0.52,-0.24,-0.82)

Circular Piece 2

Center : (746.25,250.85)
Radius : 178 mm

Normal : (0.61,0.76,-0.19)

98,0.19)
Road
Distance : 1000 mm
Cocolority : 0,97 Lane 2
Angle Diff : 7.72 deg Cocolority : 0.826
Coplanarity : 0.99 Normal  : (-0.03,0.98,0,21)
(d)

Fig. 6: Example of SVE extraction using parallelism: (a) the original image; (b) the extracted
contours; (c) Gestalts being extracted partly already representing SVEs; (d) Two objects,
circular traffic sign and street markers, as low order semantic combinations of Gestalts as

SVEs.

Figure 7: Three road scenes and the depth information at the road surface (shown
as a disparity map), which is estimated from the depth information available at the
lanes and the edges of the mwad.
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next period. Note that, since we make also use of 3D information', we have to deal with
the uncertainty thereof (see top of figure 5a where the difference between a naive
Euclidian distance measure and the use of the Mahalanobis distance is demonstrated).

Note that an explicit knowledge of the uncertainties involved in the reconstruction
process is necessary to compute the Mahalanobis distance. This issue has been treated
in a separate work (Pugeault et al. (to be submitted), Appendix K).

Within the representation described above, we have also addresses the issue of road
estimation. It has been shown in (Kalkan et al (in press), Appendix D) using colored
range images that depth at homogeneous image areas is related to the depth of the edge
segments in the neighborhood. This fact is utilized in (Kalkan et al. (2007b), Appendix
F) in the form of a voting-based depth prediction model, which estimates depth at
homogeneous image areas from the depth of edge structures in the scene. The depth of
edge structures is computed using the multi-modal primitives allows for the estimation
of depth at in particular homogeneous image areas. In Fig. 7 the road structure is
computed as the dominant co-planar surface for three outdoor scenes.

3.3.2 Street Trajectory Parameterized by Polynomials

The probably most fundamental SVE is the trajectory of the street. In order to apply any
learning algorithm, street markings must be extracted and made available in an

appropriate representation in real time.

Fig. 8: Left: By the robot recorded street scenery in the lab. Middle: The image after applied
edge detection, grouping and joining. The line detected as inner right street marking is plotted
in white, other edges in light grey. Right: The polynomials from the output file plotted. The
colours correspond to the colour coding used in the output example. Thus, the first part is red,
the second green and the last blue.

! Note that we are not dogmatic in terms of advocating the use of 3D information instead of 2D
information but that we acknowledge that depending on the context and task both types of information
are useful and should be accessible with the underlying uncertainties.
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To detect street markings in the images recorded by the robot, e.g. as shown in Fig. 8§,
several steps are necessary. It must be assured that all pixels found are part of the
marking, as others would add undesired noise to the description. Furthermore it is
desirable to find all pixels that contribute to the street marking, as any less would be a
source of noise. For this we use the common assumption that the longest line in the
image describes the street lane marking. Unfortunately noise in the recorded images,
reflections, and occlusions provoke edges interruptions. Thus, the longest line in the
edge image, indicating the street marking, may decay into short line segments. The
methods used to deal with these interruptions are very technical and shall not be
described here. The result is a nearly un-fragmented right lane marking, where detection
of the left lane is left for further processing. Note, the left lane is often not visible in the
image, or only a short part of it, due to the limited field of view allowed by the deployed
lenses.

The detected lane is then represented by a function fitting method where we
approximate the line piecewise with three polynomials. The algorithm outputs are the
polynomials parameters, a timestamp and an indication whether the detected marking
describes the left or the right lane. Three polynomials are used because every single one
tends to diverge at the outer limits of the curve. An interval is given which indicates
where the given polynomial is defined. In the example above, polynomials for different
coefficients are drawn, and colour coded as follows:

part 0: 139.835 + 0.0660085%x - 0.000173041#x.72 + 1.64977e-06%x.13

part 2: -84.8001 + 0.32184*x_3 + 0.00171013*x_3.22 -9.44763e-07*x_3."3

3.3.3 Ground plane detection

In order to estimate the ground plane, we estimate the disparity plane, then map the set
of points from the disparity domain into a 3D world domain, and finally fit a plane
through the projected set (a detailed description is given in [Chumerin and Van Hulle
(in press), Appendix C).

Before the disparity plane estimation, we intersect the disparity map with the pre-
defined road mask (see Fig. 9, left panel). By this step, we filter out the majority of
pixels which do not belong to the ground plane and are outliers in the disparity plane
linear model.

13



Figure 9: Ground plane detection

The disparity plane parameters are estimated using IRLS (Iteratively Reweighted Least-
Squares with weight function proposed by (Beaton 1974). For the ground plane para
meters estimation, we choose a set of nine points 3x3 lattice) in the lower half of the
frame (see Fig. 9, right panel). Disparities for these points are determined using the es-
timated disparity plane. Given the disparities and camera calibration data, we project
the selected points into a 3D world coordinate system. In addition, we add two so-called
stabilization points which correspond to the points where the front wheels of the test car
are supposed to touch the road surface. For the inverse projection of the stabilization
points, we use parameters of the canonic disparity plane: it is a disparity plane which
corresponds to the horizontal ground plane observed by cameras in a quiescent state.
The parameters of the canonic disparity plane and positions of the stabilization points
were obtained based on the test car geometry and camera setup position and orientation
in the test car.

The full set of 11 points is then used for IRLS fitting of the ground plane in a world co-
ordinate system. During the disparity plane estimation, we use the estimation from the
previous frame for weight initialization in IRLS; for the first frame, for the same pur-
pose, we use the parameters of the canonic disparity plane. We assume that the ground
plane is estimated correctly if its orientation has a quite small deviation (norm of differ-
ence of the unity normal vectors) from the orientation of the canonic ground plane and
in the same time from the orientation of the plane obtained at the previous frame. Oth-
erwise the estimation from the previous frame is used.

14
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Abstract

Visually extracted 2D and 3D information have their
own advantages and disadvantages that complement each
other. Therefore, it is important to be able to switch between
the different dimensions according to the requirements of
the problem and use them together to combine the reliabil-
ity of 2D information with the richness of 3D information.
In this article, we use 2D and 3D information in a feature-
based vision system and demonstrate their complementary
properties on different applications (namely: depth predic-
tion, scene interpretation, grasping from vision and object
learning)'.

1. Introduction

There exist acknowledged differences between visually
extracted 2D and 3D information (see, e.g., [2, 4]). In ad-
dition to the difference in dimension, two aspects of 2D in-
formation can be distinguished [12]: appearance based in-
formation (such as pixel color values or contrast transition)
and geometric information (such as the position and orien-
tation of a local edge). An overview of such differences is
given in Table 1.

Two dimensional geometric information varies signif-
icantly with viewpoint changes. Actually, it is only the
change of 2D orientation that allows for the reconstruction
of a 3D orientation. For many tasks such as object recogni-
tion, this imposes the problem to compensate for this vari-
ance which can be done for example by invariant descriptors
(see, e.g., [10, 11]). However, an invariance to such trans-
formations leads necessarily to a weakening of the struc-
tural richness of the representations since properties that the
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system becomes invariant to can not be represented any-
more.

For both types of 2D information, geometric or appear-
ance based, the transformation under viewpoint changes can
be computed explicitly or at least approximated once the un-
derlying 3D model is known. Hence, using 3D information
reduces the problem of variance under view-point transfor-
mation (with the exception of occlusions) and also allows
to compute rich geometric information in terms of 3D po-
sition and 3D orientation. It also allows for the definition
of semantic relations such as the Euclidian distance of vi-
sual entities or their co-planarity (see below). Moreover, in
the context of robotic systems, the 3D space is closer to the
space the action takes place in comparison to the 2D image
space. For example in grasping, the transformation between
joint co-ordinates and 3D pose is usually trivial [13]; and
in navigation, planning is often done in maps representing
depth information in an Euclidian way.

However, there are also problems connected to the use of
3D information. First, significantly more complex process-
ing is required: Besides the fact that multiple cameras are
required that usually need to be carefully calibrated, corre-
spondences need to be found. For feature based matching,
this imposes a number of possible error sources. For ex-
ample, besides the possibility of a wrong match, it might
even be that a feature is extracted in only one of the images.
Moreover, when 3D information is extracted by stereo, the
quality of information highly varies with space since the un-
certainties that are associated to reconstructions at different
positions in Euclidian space are highly non—isotropic and
hence any depth information carries an uncertainty that de-
pends strongly on the viewpoints [15].

We suggest that efficient visual systems should make use
of the complementary properties of 2D and 3D information
according to the actual context and task. This seems to hold

17



for human vision as well. For example, although 2D in-
formation is sufficient for a large number of vision tasks,
Edelman and Biilthoff [4] have shown that the existence of
3D information reduces the mean error rate for tasks like
recognition. Since 2D information is more reliable but 3D
information is richer, one can for example use the comple-
mentary aspects of both kinds of information by doing se-
mantic reasoning and hypotheses generation in the 3D space
and feed these hypotheses back to lower levels of process-
ing.

In [9], a visual representation, which is based on local
symbolic features called multi-modal primitives, has been
introduced. These primitives (see Figure 1(a)) represent a
local part of the scene in terms of condensed 2D and 3D
information covering appearance based aspects of visual
information (color and local phase) as well as geometric
information in terms of 2D and 3D position and orienta-
tion. These primitives allow for switching between 2D and
3D as well as geometric and appearance based information
and hence their complementary properties can be used effi-
ciently. Moreover, in [15], a model for the uncertainties of
the 3D properties covered by the primitives is derived and
is used to facilitate the reasoning processes in 3D space.

Originally, the multi-modal primitives have been de-
signed to formulate predictions in an early cognitive vision
system to disambiguate visual information (see [19]). In
this work, we make use of this representation to character-
ize scenes and objects by 2D and 3D properties of the prim-
itives as well as by a number of relations defined upon the
primitives such as parallelism, co-planarity etc. We show
that the structural richness of the representations allows for
semantic reasoning about object properties and object rela-
tions in scenes. The representations are rather generic since
they basically cover known attributes of visual information
such as orientation, color, local motion as also computed in
the first stages of human visual processing [7].> Hence, the
primitives can be made use of for a variety of tasks.

In this paper, the strength of the approach is demon-
strated on a variety of applications such as depth prediction,
road interpretation, grasping, and object learning. Here, we
focus less on the detailed description of the algorithms but
on how the introduced representation facilitates the compu-
tation for the different tasks. In that sense, this article has a
review character of previous works as well.

The paper is structured as follows: In section 2, the vi-
sual representation in [9] is summarized. In section 3, we
then briefly describe 4 applications and in section 4, we re-
flect upon the properties of the representation.

2 A more detailed discussion of the biological motivation can be found
in [9].

2. Primitives and Relations

In [9], a visual representation has been introduced in
terms of local condensed symbolic features called multi-
modal primitives. We give a brief description of these fea-
tures in section 2.1. In section 2.2, we introduce perceptual
relations on these symbolic features that are applied in the
applications described in section 3.

2.1. Multi-modal primitives

In its current state, the primitives discussed can be edge-
like or homogeneous and carry 2D or 3D information. For
edge-like primitives, the corresponding 3D primitive is ex-
tracted using feature based stereo. Since correspondences
can not be found for homogeneous image structures, 3D
primitives for these image structures can be estimated from
the surrounding 3D edge-like primitives (see also section
3.D.

An edge-like 2D primitive (Figure 1(a)) is defined as:

ﬂ':(m,H,w, (Clvcmacr)mf)» (1)

where m is the image position of the primitive; 6 is the 2D
orientation; w represents the contrast transition coded in the
local phase; (c;, ¢, €-) is the representation of the color,
corresponding to the left (c;), the middle (c,,) and the right
side (c,-) of the primitive; and, f is the optical flow.

1) 2)

A a4

OSP

left

(@ (b)
Figure 1. (a) Two types of edge-like 2D primitives [9] 1) represents
the orientation of the primitive, 2) the phase, 3) the color and 4)
the optic flow. (b) Reconstruction of a 3D primitive from two 2D
primitives.

As the underlying structure of an homogeneous image
patch is different from that of an edge-like patch, a differ-
ent representation is needed for homogeneous 2D primitives
(called monos):

7™ = (m,c), (2)

where m is the position in the image, and c is the color of
the mono. Note that these different image structures can be
distinguished by the intrinsic dimension of the image patch
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3D

| | 20

Distances and angles are invariant under camera
transformations

Distances and angles are variant under camera
transformations

Units have physical meaning (distance in millimeters)

Pixel coordinates are not directly usable for physical
measurements

High likelihood of errors and uncertainty

2 | Relations are richer (coplanarity,proximity) Restricted to 2D relations 2
& [ Possible to obtain a complete model of an object To cover all perspectives of an object a high number of | S
images are required
Directly relatable to actions Requires additional computation to become related to
actions
g High computational complexity Low computational complexity g
9

Higher reliability

Table 1. Different properties of 2D and 3D information. While 3D information has geometric properties (position and orientation), 2D
information covers also appearance based properties (color,contrast transition etc.).

[5]. See [9] for more information about these modalities and
their extraction. Figure 2 shows the extracted primitives for
an example scene.

Figure 2. Extracted primitives (b) for the example image in
(a). Magnified edge primitives and edge primitives together with
monos are shown in (¢) and (d) respectively.

A primitive 7 is a 2D feature which can be used to find
correspondences in a stereo framework to create 3D primi-
tives (as introduced in [16]) which have the following for-
mulation:

H:(M,Gag,(clacmac?”))v 3

where M is the 3D position; © is the 3D orientation. Ap-
pearance based information is coded in the phase 2 (i.e.,
contrast transition) and (¢, ¢, ¢;-) is the representation of

the color, corresponding to the left (¢;), the middle (c,,)
and the right side (c,.) of the 3D primitive. Both, phase and
color, are extracted as a combination of the associated val-
ues in the corresponding 2D primitives in the left and right
image. The reconstruction of a 3D primitive from two cor-
responding 2D primitives is examplified in Figure 2(b).

In section 3.1, we estimate the 3D representation IT™ of
monos which stereo fails to compute:

" = (M, n, c), “)

where M and c are as in equation 2, and n is the orientation
(i.e., normal) of the plane that locally represents the mono.

2.2. Perceptual relations between primitives

The sparse and symbolic nature of the discussed prim-
itives allows for perceptual relations defined on them that
express relevant spatial relations in 2D and 3D space. These
relations can be applied in rather different contexts such as
depth prediction, object learning and grasping (see section
3).

Collinearity: Two spatial primitives II; and II; are
collinear (i.e., part of the same group) if they are part of the
same contour. Due to uncertainty in the 3D reconstruction
process, in this work, the collinearity of two spatial primi-
tives Il; and II; is computed using their 2D projections 7;
and 7;. We define the collinearity of two 2D primitives 7;

and 7; as:
- lail + oy
sin ( 5

where «; and «; are as shown in Figure 3(a).

Co-planarity: Two 3D edge primitives II; and II; are
defined to be co—planar if their orientation vectors lie on the
same plane, i.e.:

COl(’]Ti,’/Tj) =1-

) ®)

COp(Hi, Hj) =1- |pr0jtj><vi_7‘ (ti X Vij)‘, (6)
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Figure 3. Illustration of the perceptual relations between primi-
tives. (a) Collinearity of two 2D primitives. (b) Co—colority of
three 2D primitives 7;, m; and 7. In this example, 7; and 7; are
cocolor, so are ; and 7 ; however, 7; and 7y, are not cocolor. (c)
Co—planarity of two 3D primitives IT; and IT;.

where v;; is the vector (M; — M ,); t; and ¢; denote the
vectors defined by the 3D orientations ©; and O, respec-
tively; and, proj,, (a) is the projection of vector a over vec-
tor u. The co—planarity relation is illustrated in Figure 3(b).

Co—colority: Two 3D primitives II; and II; are defined
to be co—color if their parts that face each other have the
same color. In the same way as collinearity, co—colority of
two spatial primitives II; and II; is computed using their
2D projections 7; and 7;. We define the co—colority of two
2D primitives 7; and 7; as:

coc(m, ;) =1 —de(cy, ¢5), (7

where c; and c; are the RGB representation of the colors
of the parts of the primitives ; and 7; that face each other;
and, d.(c;, ¢;) is Euclidean distance between RGB values
of the colors ¢; and c;. Co-colority between an edge prim-
itive m and a mono primitive 7", and between two monos
can be defined similarly (not provided here). In Figure 3(c),
a pair of co—color and not co—color primitives are shown.

Rigid-body motion: The rigid body motion M;_¢4 Ay
associating any entity in space in the coordinate system of
the stereo set—up at time ¢ to the same entity in the new coor-
dinate at time ¢ + At is explicitly defined for 3D—primitives
(see Figure 4):

~ t+ AL
I, = Mgy a(TI). ®)

3. Applications

In this section, the framework introduced in section 2 is
applied to a variety of tasks such as depth prediction at ho-
mogeneous image structures (section 3.1), scene interpreta-
tion (section 3.2), grasping (section 3.3) and object learning
(section 3.4).

3.1. Depth prediction

Edge primitives represent edge—like structures. It is
known that it becomes increasingly difficult to find corre-

1 5\4 A”

>k

A predicted
motion
IT, 7
t 1+t
v i

= I\ ‘
\ nit -
‘ predicted ' »
motion : w {?‘
I, ",
¢ : t+0ot :

Figure 4. Example of the rigid-body motion of a primitive (see

text).
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(b)

Figure 5. Depth prediction at homogeneous image areas using per-
ceptual relations between primitives. (a) The results, shown as a
disparity map only at the predictions, are from the scene in Figure
2. (b) A global dense stereo method (taken from [18]) that uses
dynamic programming to optimize matching costs.

(a)

spondences between local patches the more they lack struc-
ture. On the other hand, it is known that lack of structure
also indicates lack of a depth discontinuity [6, 8]. Moreover,
we have shown that based on the co-planarity relation, depth
at homogeneous image areas can be predicted (see Figures
5 and 6). Such a scheme can be used to ‘fill in’ the rep-
resentation at homogeneous areas using co—planar relation-
ships between edge-like primitives. In Figure 5, the homo-
geneous primitives inferred using such a scheme are shown
as a disparity map. Results on the same scene are shown for
a global dense stereo method (taken from [18]) that uses dy-
namic programming to optimize matching costs. Figure 5
shows that such depth prediction can be used as a depth cue
providing additional information in particular when image
structures are too weak to find correspondences. When con-
fronted with an image as in Figure 6, many dense depth esti-
mation algorithms either basically fail or assume implicitly
some linearity assumption that leads to rather bad recon-
struction. However, our method can ’interpret’ the curved
edges of the cylinder in order to reconstruct the round sur-
face.
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Circular Piece 3

Center :(743.26,251.46)
Radius : 178 mm (mk)
Normal : (0.75,-0.47,0.47)

[Traffic Sign
Cocentricity

: 2.04pix

Radius Difference : 0 mm

Coplanarity

:0.51

Circular Piece 1

Center :(744.33,251.37)
Radius : 178 mm (mk)
Normal : (0.52,-0.24,-0.82)

Lane 1
Cocolority : 0.874
Normal :(-0.09,0.98,0.19)

Circular Piece 2

Center :(746.25,250.85)
Radius : 178 mm

Normal : (0.61,0.76,-0.19)

Road
Distance
Cocolority :0.97
Angle Diff :7.72 deg
Coplanarity : 0.99

:999.042 mm

(b)

Figure 7. Interpretation of a road and a circular traffic sign. (a) Input image from a stereo pair and the corresponding 2D primitives (b)

Interpretation of the scene.

(c) @

Figure 6. Depth prediction for a round object. (a) Left stereo im-
age. (b) The top view of the results of 3D reconstruction from a
dense method (taken from [17]). The dense method estimates a
planar surface. The dynamic programming method from [18] pro-
duces similar results. (¢)-(d) Two views of the results of our depth
prediction method. Note that (b)-(d) are snapshots from our 3D
visualization software.

3.2. Scene interpretation

Based on the co-linearity relation defined in section 2.2
we can define higher level entities, in the following called
groups, as sets of co—linear primitives (for details see [16]).
Although the groups of multi-modal primitives have higher

semantic meaning than individual primitives, they are not
enough to define an object or give an idea about the struc-
ture of a scene. Therefore, combinations of groups are more
suitable for interpreting a scene. As an example (see Figure
7), one lane of a road can be defined by a group of primi-
tives but this group is not qualified as a road, unless it is not
combined with the group that represents the opposite lane.
In that sense, the opposite lane is the one that lies on the
same plane with a certain distance and similar color. With a
similar reasoning, a circular traffic sign is interpreted by the
combination of circular pieces that shares the same center
and the plane with a similar enough color.

In this way we can make use of the appearance based
as well as geometric information in the primitives. Inter-
estingly, this allows for a close to textural description of
objects and scenes, e.g., the particular traffic sign in Fig-
ure 7 can be described by its geometric properties (curved
and co-planar groups with a certain proximity) as well as its
appearance based aspects (being blue). In this way, the in-
troduced representations can be seen as as an intermediate
step towards high level representations in which by express-
ing the semantic relations introduced in section 2.2, abstract
statements about the scene structure can be made.

3.3. Grasping

In [1], it has been shown how geometry, appearance and
spatial relations between multi-modal features can guide
early reactive grasping which is an initial “reflex-like”
grasping strategy. A simple parallel jaw gripper was used
and five elementary grasping actions, called EGAs, were
associated to co-planar primitives. Two samples are shown
in Figure 8(a). The EGAs were tested in a simulation en-
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vironment [1] as well as in a real environment. It has been
shown that with a rather weak assumption of co-planarity
and hence without any a-priori object knowledge, success-
ful grasps could be generated which can then be haptically
verified and used further in a cognitive system (see section
3.4). Basically, plane hypotheses based on co-planar fea-
tures (as discussed in section 2) become associated to grasp
hypothesis (see Figure 8(b)). By making use of the addi-
tional relations co-colority and co-linearity, the number of
potential grasp hypotheses could be further reduced.

() (®)
Figure 8. Sample elementary grasping actions and grasping hy-

pothesis from [1] (a) Two sample EGAs (b) Two sample grasp
hypotheses.

Even more reliable grasping hypothesises can be asso-
ciated to object parts (see, e.g., [2]). To grasp cylindric or
conic objects, grasping options can be associated to a cir-
cle (see Figure 10). Here, instead of using second-order
relations between multi-modal primitives, 3D locations of
circles have been used to generate grasping hypothesises.

To extract a 3D circle, it is important to switch between
the 2D and the 3D aspects. The first step is locating the
3D circle by using the fact that a circle in 3D can be ap-
proximated by an ellipse in 2D. Although fitting an ellipse
to 2D data is easier than fitting a circle in 3D, an ellipse
does not give sufficient information about the center, radius
and the plane normal of the 3D circle. At that point, it is
possible to switch the dimension and obtain the missing in-
formation by processing the 3D features that correspond to
the 2D features which form the ellipse. Fitting a plane to the
3D features determines the normal of the circle. Finally, the
intersection of this plane and the line that passes from the
camera center and the multiplication of the pseudo-inverse
of the projection matrix and 2D ellipse center gives the cen-
ter of the circle. An example of the procedure is given in
Figure 9 (a-c).

Once a circle is found in 3D, four different grasp hypoth-
esis can be generated (see Figure 10). The first one uses the
center and the normal of the circle to place the gripper in-
side the circle and uses the radius to grasp the object from
inside. For the second hypothesis, a point on the circle is
calculated and this point is used to grasp the object from its
brim. For the third hypothesis, the center and the normal
of the circle is used for placing the gripper orthogonal to

O
—y
(a) (b)
() (d) © ®

Figure 9. Grasping of a cylindrical cup (a) Input left image (b)
Corresponding 2D primitives (c¢) Detected circle (d) Model of the
robot (e-f) The cup is grasped by the robot with respect to the
extracted information.

the circle normal, the radius is used to open the gripper and
the object is grabbed from the side. The last hypothesis is
similar to the first one but instead of inner side, the circle is
grasped from outer side. A sample grasp of the second type
is presented in Figure 9 (e-f).

O T

Figure 10. Four different grasp hypothesises for circles

3.4. Learning objectness and object shape

The detection of features belonging to one individual ob-
ject is not a trivial task when a stereo system only observes
a scene since there is no decision criterion that a set of fea-
tures actually can be separated from the rest of the scene.
However, having achieved a successful grasps (as explained
in section 3.3), the robot has physical control over a poten-
tial object, and it can try to move it (see Figure 11). Since
the change of primitives under a rigid—body motion can be
described analytically (see section 2.2), predictions about
the change of primitives can be derived. Only primitives
that change according to these predictions are supposed to
be part of the object.®> In Figure 12, a number of represen-
tations are shown that have been extracted by this method
(for details, see [14]). First steps in using these object rep-
resentations for pose estimation and grasping are made in

[3].

3Note that the primitives belonging to the grasper change according to
the robot motion but they can be eliminated using the model of the grasper.
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Figure 11. The robot is doing a rotation to extract the 3D model of
a basket.

Figure 12. Sample objects and their related accumulated represen-
tation [14].

4. Discussion

The advantages of using a 2D or a 3D scene representa-
tion is highly dependent on the application and the context.
Both have their own advantages and disadvantages as pre-
sented in Table 1. By keeping these properties in mind, we
described a representation that preserves relevant aspects of
2D and 3D information to allow for switching between the
dimensions according to the actual requirements. We ex-
emplified the potential of this approach in four applications
of rather different nature, covering depth estimation at ho-
mogeneous areas, semantic scene description, grasping and
extraction of object representations.
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Local statistics of retinal optic flow for self-motion through
natural sceneries

Dirk Calow and Markus Lappe
Dept. of Psychology, Westf.- Wilhelms University, Fliednerstr. 21, 48149 Miinster, Germany

Abstract Image analysis in the visual system is well adapted to the statistics of natural
scenes. Investigations of natural image statistics have so far mainly focussed on static fea-
tures. The present study is dedicated to the measurement and the analysis of the statistics
of optic flow generated on the retina during locomotion through natural environments. Nat-
ural locomotion includes bouncing and swaying of the head and eye movement reflexes that
stabilize gaze onto interesting objects in the scene while walking. We investigate the depen-
dencies of the local statistics of optic flow on the depth-structure of the natural environment
and on the ego-motion parameters. To measure these dependencies we estimate the mutual
information between correlated data sets. We analyze the results with respect to the varia-
tion of the dependencies over the visual field, since the visual motions in the optic flow vary
depending on visual field position. We find that retinal flow direction and retinal speed show
only minor statistical interdependencies. Retinal speed is statistically tightly connected to
the depth structure of the scene. Retinal flow direction is statistically mostly driven by the
relation between the direction of gaze and the direction of ego-motion. These dependencies
differ at different visual field positions such that certain areas of the visual field provide
more information about ego-motion and other areas provide more information about depth.
The statistical properties of natural optic flow may be used to tune the performance of ar-
tificial vision systems based on human imitating behavior, and may be useful for analyzing
properties of natural vision systems.

Keywords: optic flow, natural ego-motion, statistics, entropy estimation, mutual information estimation

1 Introduction

Often the brain has to analyze sensory signals which are ambiguous. Ambiguity arises from
the spatial and/or temporal properties of the perceptual sensors, from noise introduced
by the perceptual sensors, and from noise created by the environment. To (re)construct
perception, the brain may use statistically plausible predictions and/or statistical models
of the signal-sending environment. The resources of a signal processing system are usually
limited, and therefore the range of signals that can be processed is bounded. Non-linear
processing schemes that include knowledge of the statistics of the signals can enable the
system to be more sensitive for signals which occur very frequently, and to attach less value
to signals which are very unlikely to occur. Such statistically efficient processing schemes
restrict the limited resources of the system to the range of statistically probable signals.
Therefore, evolutionary adaptations of the perceptual areas of the brain to the statistics of
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natural environments are plausible. Effects of such adaptations are seen in gestalt laws (Elder
& Goldberg, 2002; Kriiger & Worgdtter, 2002) and in efficient encoding schemes (Barlow,
1961; Laughlin, 1981).

In the visual modality, several researchers invested effort to reveal the statistics of natural
environments, and to link it with the neural representation of the sceneries (Laughlin, 1981;
Rudermann & Bialek, 1994; Atick & Redlich, 1992; Olshausen & Field, 1996; Kriiger, 1998;
van Hateren & Rudermann, 1998; Zetsche & Krieger, 2001; Berkes & Wiskott, 2002; Simon-
celli & Olshausen, 2001; Betsch et al., 2004). Their investigations are largely restricted to
static attributes of natural scenes, however, even when dynamic stimulus material was used
(van Hateren & Rudermann, 1998; Betsch et al., 2004). Furthermore, the resulting statistics
are treated as independent of the position in the field of view. The properties of motion
signals elicited on optic detectors by ego-motion within natural sceneries strongly depend
on the position in the view field (Zanker & Zeil, 2005). To investigate the statistics of these
motion signals therefore requires an analysis of distributions of flow vectors with respect to
their visual field position.

Optic flow generated by self motion encodes much information about the direction of ego-
motion, the velocity, the distances of potential obstacles and the structure of the envi-
ronment (Gibson, 1950, 1966). Animals use this information for path planning, obstacle
avoidance, ego-motion control, and foreground-background segregation (see Lappe (2000Db)
for an overview). The motion signals of the optic flow are processed in specialized motion-
processing brain areas (Albright, 1989; Saito et al., 1986; Duffy & Wurtz, 1991; Lappe et al.,
1996). It is likely that the motion-processing pathway of the brain uses statistical properties
of natural flow fields to efficiently encode natural optic flow, and to reconstruct the true
motion field from the motion signals in early motion detectors. We hypothesize that the
brain has involved mechanisms of extracting information from optic flow which benefit from
statistical dependencies of the elicited optic flow on the properties of the natural environ-
ment and natural motion situations. An investigation of the local statistical properties of
optic flow can be the starting point to reveal such connections.

The analysis of the statistics of optic flow may be undertaken on the true motion signals
(Ivins et al., 1999; Calow et al., 2004; Roth & Black, 2005), or on the signals obtained from
early motion detectors (Fermiiller et al., 2001; Zanker & Zeil, 2005; Kalkan et al., 2005).
The latter approaches analyze the combination of properties of the motion field generated
by ego-motion with the properties of particular motion detectors. Since we are interested in
the statistical properties of the motion field itself we need to analyze the true motion signals.
Therefore, we need a large number of true motion fields generated by natural ego-motion
through a natural environment.

A method to collect a sufficient number of true optic flow fields was introduced in Calow
et al. (2004). Based on the Brown range image data base (Huang et al., 2000) true mo-
tion fields were generated by biologically plausible ego-motion and first results of the first
order statistics of retinal optic flow fields were reported. Roth and Black (2005) used this
method to investigate the statistics of optic flow and elementary optic flow components.
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Since their work mainly focused on aspects of machine vision, the ego-motion parameters
underlying the optic flow fields were obtained from ego-motions of hand-held or car mounted
cameras. The resulting statistics were treated as independent of the position in the field of
view. Our investigation is dedicated to the local statistics of the true retinal motion signals
occurring in biological vision during natural, human-like ego-motion. In natural locomotion,
eye movement reflexes stabilize gaze on objects of interest in the scene (Solomon & Cohen,
1992; Lappe et al., 1997; Niemann et al., 1999) such that natural ego-motion is always a
combination of body movement and eye movement. The combination of body movement,
eye movement, and depth structure of the visual environment determines the structure of the
optic flow on the retina (Lappe et al., 1999). Our investigation of the statistical properties
of the flow field is therefore based on a combination of walking and eye-movement reflexes.

We use the term local statistics to note the statistical properties of the distributions of retinal
velocities and their statistical dependencies on depth and ego-motion for certain positions in
the field of view. The correlations between motion signals of different positions are not part
of our notion of local statistics.

We see the purpose of our study in providing basic information and quantitative data on
the statistics of retinal motion signals. This information can be used to predict sensitivity
ranges of neurons in the motion processing pathway of the brain. Future work will focus
on the examination of the hypothesis that these neurons efficiently encode distributions of
naturally occurring retinal motion signals. The knowledge of the statistics is crucial for that
purpose. Furthermore, the knowledge of the statistical properties of retinal motion signal is
an important tool in creating experimental paradigms that focus on natural motion stimuli.
Comparisons between natural and unnatural motion situations are necessary to reveal how
the motion processing pathway is adapted to the statistics of the natural environment. Our
investigation can also provide prior knowledge for creating probabilistic models of the motion
processing pathway of the brain based on Bayesian inference (Weiss & Fleet, 2001).

Since the local statistics of optic flow are tightly linked to the statistics of the depth structure
of natural scenes and to the statistics of the ego-motion parameters the information about the
depth map of the current scene and the ego-motion situation is encoded in the retinal flow.
However, the generation of optic flow maps from a five dimensional parameter space (walking
speed, heading, depth, and depth of the fixation point) to a two dimensional flow vector
(cf. equations (5) and (6)). Therefore, the information about the underlying parameters
is condensed in the flow vector and cannot be extracted from an individual flow vector
directly. Recovery of heading, for instance, requires the combined information from several
flow vectors (Longuet-Higgins & Prazdny, 1980). However, different areas in the field of
view show different statistical dependencies of the components of the optic flow on heading
and depth. By focussing the analysis on these areas the brain may gain instant access to
particular parameters regarding the other parameters as fixed and their variation as noise.

Our analysis starts with the measure of dependence between the random variables retinal
speed and direction for a set of positions in the field of view. Then we analyze the properties
mean, standard deviation, skewness, kurtosis, and negentropy of the distributions of speed
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and direction. The results provide the most important properties of the distributions de-
pending on the position in field of view. Finally, we investigate the statistical dependencies
between the distributions of optic flow and the distributions of depth in the scene, depth of
the fixation point, and heading. To put the influence of heading and scene structure into
context, the same analysis is performed with two other sets of optic flow fields. One set
is generated under the assumption that no gaze stabilization is executed and therefore no
rotation occurs. The second set provides a baseline for comparison of the influence of the
scene structure. In this set, the depth values are randomly mixed. Thus, the scene structure
is abolished but the depth statistics do not differ for different positions.

2 Methods

2.1 Construction of retinal flow fields

In this section, we describe the preparation of retinal flow fields in a sufficient number for
the statistical analysis. The calculation of retinal optic flow fields relies on the knowledge
of the depth map of a variety of natural scenes. We will explain how to obtain ego-motion
parameters and how to construct flow fields from the depth map and the ego-motion.

We generate flow fields under three different conditions. One condition is regarded as nat-
uralistic and combines naturalistic ego-motion, which includes gaze stabilization, through
natural scenes (natural condition). Another set of flow fields relies on the same set of natu-
ral scenes and heading directions but without gaze stabilization (non-stabilized condition).
In this set, gaze is directed to the same objects in the visual field as in the natural condition
but is not stabilized on that object, i.e. does not conteract the motion induced by the forward
movement. The third set of flow fields is generated from the same naturalistic ego-motion
parameters, including gaze stabilization, but each scene is mixed in depth by exchanging the
depth values between randomly selected pairs of positions (mixed depth condition). This
procedure ensures that the overall distribution of depth values is natural, but the differences
in depth statistics for different positions in the visual field disappears.

2.1.1 Database.

We use the Brown Range Image Database, a database of 197 range images collected by
Ann Lee, Jinggang Huang and David Mumford at Brown University (Huang et al., 2000).
The range images are recorded with a laser range-finder with high spatial resolution. Each
image contains 444 x 1440 measurements with an angular separation of 0.18 degree. The
field of view is 80 degree vertically and 259 degree horizontally. The distance of each point
is calculated from the time of flight of the laser beam, where the operational range of the
sensor is 2 — 200m. The wavelength of the laser beam is 0.9um and lies in the near infrared
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region. Thus, the data of each point consist of 4 values: the distance R, the azimuth angle ¢,
the zenith angle 8, and a value for the reflected intensity of the laser beam. The location of
the source of the laser beam is 1.5m above the ground. Figure 1 shows a typical range-image
projected onto the ¢ — 6 plane. It can be seen that the intensity of the reflected laser beam
characterizes the properties of the reflecting surfaces sufficiently well. The objects in the
scene are clearly visible, and the image resembles a grey level picture of a fully illuminated
scene at night. The data are provided in spherical coordinates R, ¢, 6. The three dimensional

Euclidian coordinates from the standpoint of the laser range finder can be easily calculated
by (X,Y, Z) = (Rcos(¢)sin(0), R cos(), Rsin(¢) sin(0).

2.1.2 Retinal projection.

The knowledge of the 3D coordinates of each image point allows the calculation of the true
motion of that point for any given combination of translation and rotation of the projection
surface. As we are interested in the statistics of retinal projections, we consider as the retina
a spherical projection surface with the radius 1. All coordinate systems we will use in the
following are attached to the center of the projection surface and therefore the coordinates
of the data delivered by the data base have to be transformed in the perspective of the
projection surface. In Euclidian coordinates, the X-and Y-axis are right and up, and the
Z-axis is perpendicular to the X-Y plane. The value of the Z coordinate of any point in the
scene is the depth of that point from the perspective of the projection surface. The most
simple description of optic flow vectors on the sphere is given by the following notation. Let
€ be the angle of eccentricity describing the meridians of the sphere and ¢ the rotation angle
describing the circles of latitude rotating counter clockwise. The focal point is defined by
¢ = 0. The meridians and the circles of latitude are coordinate lines, and every vector v on
the sphere has the components v = (v, v,) in the respective local orthonormal coordinate
system. The velocity v of a point moving over the sphere described in terms of the temporal
derivatives of € and o is v = (%, sin(e)‘é—‘;). Although the spherical coordinates €, o already
sufficiently provide the description of the sphere, we want to use a second spherical coordinate
system to denote positions on the projection surface, in terms of which we are going to plot
our results. Each position on the sphere is described by the azimuth gg and the elevation 9~,
where the projection of a point in the scene onto the sphere is governed by the relationship
in equation

sin(¢)  sin(e)

B cos(¢) ? cos(e) 05(0)

si~n(9) _ sin(e)
cos(¢) cos(f)  cos(e)

sin(o).

NI <N

Since, positions of the upper and the right visual field are denoted by positive values of 8 and
b respectively and positions of the lower and left visual field are denoted by negative values of
6 and ¢ respectively, the reader can easily discern what positions on the sphere are pointing
to the right, left, up and down from the perspective of the observer. The flow field emerging
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on a moving sphere can be easily extracted by a simple transformation from the well known
flow field (v,,vy,), which would be generated on a moving plane with internal coordinates
(x,y) = (X/Z,Y/Z) (Longuet-Higgins & Prazdny, 1980). The flow field generated on a
plane is described by

dx

1
g = == E(_Tx +2T2) + (2yQ, — (14 2%)Q, + ys2.)) (1)
d 1
== v = (T T+ (—ayQ, + (L ) — ). 2)
The transformation rule is
v. = cos’(e)(cos(o)v, + sin(o)v,) (3)
v, = cos(e)(cos(o)v, —sin(o)v,). (4)

2.1.3 Ego-motion parameters.

To calculate the flow field from the scene structure we need the motion parameters of the
projection surface. The ego-motion of the surface is fully described by the translational
velocity vector of the surface T' = (1}, 7,,T.) and the vector of rotation Q = (£, ,,€,)
in the Euclidian coordinate system attached to the projection surface. The translation T of
the surface can be further split up in the parameters translational or walking speed ||T’|| and
heading (H,, Hy), which are azimuth and elevation denoting the direction of the translational
velocity vector of the surface:

T =(T,,T,,T.) = ||T||(cos(Hy) sin(Hy), cos(Hy), sin(H,) sin(Hp)).

Natural ego-motion within the scenes involves eye movements which stabilize the gaze on
environmental objects (Lappe, 2000a; Lappe et al., 1998). Gaze stabilization keeps the point
of interest or the gaze attracting object in the center of the visual field and causes the motion
in the center of view to be zero. It can be easily extracted from equations (1) and (2) that
the associated rotation depends on the translation by 2 = Z%(Ty, —T,,0), where Z; denotes

the depth of the point at which gaze is directed. Under this assumption (3) and (4) can be
transformed to

- % <Cos(e) sin(e)T., + (Z% - C082(6)> (cos() T, + sin(a)Ty)> (5)

1 Z
v, = —cos(e)| = —1) | (cos(o)T, —sin(0)T). (6)

Z Z;
By (5) and (6) the parameters governing the optic flow at a certain position are the walking
speed ||T'||, the heading (Hg, Hy) and the depth-structure of the scene determined by the
depth Z of the point in question and the depth of the fixation point Zy.

For the condition without gaze stabilization the concerning retinal flow can be extracted
from (5) and (6) by assuming the observer gazes towards a point in infinity, i.e. Zy — oo,
and thus €2 and the term Z/Z; vanish.
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Since, for higher walking speed the distribution is linearly shifted to higher speed values,
there are only trivial correlations between the motion signals and walking speed. Therefore,
we restrict our analysis to flow fields generated by a walking speed of ||T'|| = 1.4 meter per
second.

Finding plausible ego-motion parameters (H,, Hy) and depth of fixations Z; for the respec-
tive scene requires to search for feasible walking directions within the scene and to extract
probable gaze directions. The walking direction within the scene combined with the gaze
direction provides the parameters of heading (Hy, Hp). Furthermore, if the direction of fixa-
tion is given, the depth of fixation can be extracted from the point in the laser range image
that the gaze direction is associated to.

To determine possible walking directions within a range image we search for areas which are
free from obstacles in a depth of at least 3m and a width of 0.7m. This criterion gives us a
set of walking directions for each scene, which are considered to be equally likely.

To obtain gaze directions that we can use to generate gaze stabilization movements we mea-
sured eye movements of observers who viewed images, which were generated from segments
of the range images centered on the walking directions. The images are projected onto a
36.5¢cm x 27.5¢m plane with a focal length of 30cm (white frame in Figure 1 A). Six subjects
viewed these pictures on a 17 inch computer monitor with the head stabilized on a chin rest
30cm in front of the monitor. Pictures were shown for 1 second in immediate succession to
give the impression of a changing environment the subject is moving through. Gaze fixation
points were measured by an eye tracking system (Eye Link IT). The first fixation for each
picture was rejected because it might be partially driven from the preceding picture. The
subsequent fixations were used as probable gaze directions for the statistical analysis. Al-
though, the subjects are not actually walking through the real scenes, and therefore have no
access to the true color, disparity and other factors, which might influence gaze attraction,
the arrangement of objects and surfaces populating the scene and the objects itself are well
recognizable (Figure 1 A). Furthermore, humans are usually familiar with that sort of scenes
and this world knowledge ensures that the scenes are instantly identifiable as street scenes
or forest scenes, and that gaze is instantly attracted to the usual objects in such scenes.
Figure 1 B shows the distribution of gaze directions while viewing the scenes. The points
are plotted in spherical coordinates (¢, ) and are centered on the direction of walking used
for the flow field calculations.

To consider all aspects of human walking we also take bouncing and swaying of the head
during walking into account. Bouncing and swaying of the head while walking is part of
the complex oscillatory motion pattern of during walking (Imai et al., 2001). The position
of the head during walking can be modeled as sinusoidal time functions. To obtain typical
values for the amplitude and period we measure the head position of one human subject
while walking. The walking velocity of the subject was 1.4 meter per second. The height of
the subject was 1.80 meter. The head-position was measured by a position tracking system
(Motion Star). We approximate the properties of vertical and horizontal movement of the
head as follows. The vertical head position has a period of 0.6 second and an amplitude of
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0.02 meter. The horizontal head position has a period of 1.2 second and an amplitude of
0.02 meter as well. The velocity of the head during walking can be obtained by the first
temporal derivative of the horizontal and vertical head position. The actual horizontal and
vertical movement of the head for a certain motion situation is picked up at a randomly
selected time and is added to the preliminary determined ego-motion parameters such that
the gaze of the eye towards the fixation point is stabilized also during bouncing and swaying

of the head.

Since the actual combination of walking direction, gaze direction and head movement is
linked to the environment and to the task, and since the simulated components of ego-
motion might not be generally independent, our assumed ego-motion is an approximation to
actual ego-motion and might not match actual ego-motion in all details. But the simulation
matches the main components of human ego-motion and allows us to combine naturalistic
ego-motion parameters with the true depth information data provided by the range image
database.

We mirror each scene and the respective heading on the vertical plane (Y-Z plane). This
procedure of mirroring the scene attaches to each position in the field of view the depth value
of its counterpart in the opposite hemisphere and therefore doubles the set of depth data
points for each position. Simultaneously mirroring the heading ensures that ego motion is
still in the direction of the obstacle free corridor.

2.1.4 The retina

The flow fields we finally consider are elicited on the inside of a section of a sphere, in which a
grid of motion sensors is affixed. The field of view of this retina is set to 90° horizontally and
58° vertically. This field of view is subdivided in pixels, which can be referred to as motion
sensors, with a resolution of 0.36° x 0.36° yielding a grid of 250 x 160 pixels. As the angular
separation of the range images is 0.18°, one pixel covers up to 4 data points. The depth values
Z = Rsin(¢)sin(f) from these data points are averaged. The mean depth value is assigned
to the pixel in question. Thus, we reduce the original resolution provided by the laser range
images. This procedure is necessary, because the pixel grid of the retina is sliding over the
pixel grid of the laser range image and mostly does not match the original pixels. Therefore,
reducing the resolution ensures that all pixels of the retina receive appropriate motions
signals. The flow vector attached to a pixel depends on the depth value, the translation and
rotation components of the ego-motion and the visual field position of the pixel. The flow
vectors of all pixels of an image provide the measurement of the true retinal flow field for
this gaze direction, ego-motion, and scene. Figure 1 C shows an example of a true retinal
flow field.
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2.2 Statistical analysis

We constructed 7136 different flow fields for each of the three conditions naturalistic, no gaze
stabilization, and mixed depth map. To examine the local statistics of these flow fields we
collect for each scene, motion situation, and pixel position the data sets which comprises the
retinal velocity, the depth at the respective position, the depth of fixation, and the heading
of the respective ego-motion. Examples of the distributions of retinal velocities can be seen
in Figure 2.

The analysis of the local statistics of optic flow is divided into two parts. The first part is
dedicated to the examination of the distributions of optic flow and how strong the statistical
properties of which depend on the positions in the field of view. The investigation considers
the polar optic flow components retinal flow direction and retinal speed and starts with
the measure of the statistical dependence of these two variables. Although there are slight
differences in the degree of statistical dependence for the different conditions, it turns out
that flow direction and retinal speed are largely statistically independent for all conditions.
Therefore, the further analysis is based on the extracted one-dimensional distributions of
retinal speed and retinal flow direction. For each position in the field of view we measure
the mean, the scatter, the skewness, the kurtosis and an estimation of the negentropy for
the distributions of retinal speed and retinal flow direction.

The second part addresses the problem of the statistical dependence of the variables retinal
direction and retinal speed on the particular parameters depth, depth of fixation point,
and heading. The statistical correlations are not purely linear, and nonlinear statistical
dependencies play an important role. This can be seen in the exemplary scatter-plots (Figure
3), which show the extracted data for the distribution of retinal speed and the inverse of
depth (Figure 3 A), the retinal speed and the elevation heading component (Figure 3 B), and
the retinal speed and the azimuth heading component (Figure 3 C) at the visual field position
(—5°,—18°). All scatter plots show that a statistical analysis based on linear correlation is
not sufficient. For example in the scatter plots Figure 3 A and C a quadratic correlation
seems to underlie the data set and in the scatter plot Figure 3 B a correlation of degree
three provides the main contribution. However, despite the very different kinds of statistical
dependencies for different data sets and for different positions we would like to compare
the degree of dependence the retinal flow has on the different parameters. Information
theory provides the notion of mutual information between random variables. The mutual
information is a measure of the difference between the joint probability density function
(PDF) of the random variables and the PDF which would appear if the random variables
were statistically independent. Since the mutual information only vanishes if the random
variables are fully statistically independent, the measure of the mutual information takes
all kinds of statistical dependencies into account and is useful to investigate the degree of
dependence between random variables. However, the mutual information can range from
zero to infinity. Therefore, we are going to define a generalized dependence coefficient in
terms of the mutual information between data sets which will be bound between values 0
and 1. This definition is motivated by the mathematical relation between mutual information
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and the linear correlation in the case of purely linear statistical dependency.

2.2.1 Polar representation of retinal flow vectors

The retinal velocity at a certain position in the field of view is a two dimensional vector
(ve, vy). Therefore, the velocity distributions are distributions of two dimensional random
variables. The random variables we choose for further analysis are the polar coordinates
retinal speed v and retinal direction ¢g4,. We will show that these random variables are
largely independent. Thus, our analysis of the local statistics of retinal velocities will be
separately performed on these two random variables:

— /2 2
vo= vZ + vz,
arccos | ——— i Ve >0,
o \/ v+
¢di7‘ -

—arccos | ——=— i v, < 0.

/2 402
VE+UE

2.2.2 Estimating the properties of the distributions of speed and direction

To illustrate the different properties of the distributions of speed and direction for different
positions in the visual field we measure the mean (FX), the scatter (DX), the skewness
(M5X), the kurtosis (MyX), and estimate the negentropy (JX). For the sake of complete-
ness, we list the well known corresponding formulas to estimate these parameters from an
empirical data set X = {z; € R};_12 N

1 N
EX = Ng;a;

N

1
DX = Mo X = | ——— _ EX)2
2 N—1;(l‘l )
L SN e EX)3
M. X — NI Zi:l(xz )
3 DX3
4 DX*

DX is a measure for the width or the spreading of the data, M3X and M,;X are measures
of the difference between the empirical distribution and the Gaussian distribution. M3X
measures the asymmetry and MyX is a measure for the flatness of the distribution. A
negative value of My;X means the distribution is more flat than a Gaussian and has shorter
tails. A positive value of MyX means the distribution has a peak higher than a Gaussian
and longer tails.
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Mean, scatter, skewness and kurtosis take only the first four moments of a distribution
into account. To obtain a compact measure to assess the difference between an empirical
distribution and the Gaussian distribution with the same mean and scatter we estimate
the negentropy from the empirical distribution. Let P(z) be the probability density function
(PDF) of a random variable X. The negentropy J(X) is defined as the difference between the
differential entropy of the Gaussian H (X quss) and the actual differential entropy H(X) :=
— [ p P(2) l0gy(P(2))da

suppP
J(X) = H(Xguuar) — H(X) = 3 logy(e2nDX?) — H(X),

where e is the Euler number. Since a Gaussian distribution has the maximal entropy for a
given mean and scatter, J(X) is always nonnegative and vanishes only if X is a Gaussian
distribution. The estimation of the negentropy of a distribution requires the estimation of
the differential entropy.

2.2.3 The measure of dependence and the estimation of differential entropy

The analysis of the statistical interdependence between the optic low components retinal
direction and retinal speed and the statistical dependencies of the optic flow components on
the parameters depth, depth of fixation point and heading components requires estimating
the mutual information from two-dimensional and three- dimensional data sets. The analysis
of the properties of the distributions of retinal speed and retinal direction furthermore needs
an estimation of the differential entropy from one-dimensional data sets.

The mutual information m/1 (X, Xs,...X,,) between (possibly more-dimensional) continuous
random variables X; with minor PDF’s P;(x;) and joint PDF Py (xy, 23, ...) is defined by

Px(x1, 29, ... m
ml(Xi,Xs,...) = / Px(z1, 29, ...) logy (Pl(xlflgg(latg)z...P)(w )>d T,

= Y H(X;) - H(X1,X,...), (7)

where m = > dim(X;) and
H(X)= —/Px(x) logy(Px (x))d™x; m = dim(X) (8)
is the (differential) entropy for the random variable X. The mutual information is always
nonnegative, and zero if and only if P(x,xs,...) = Pi(x1)Py(x3)...P, (), i.e. the X; are
mutually independent random variables. In this study, we deploy the method of the k-

nearest neighbors distances to estimate the differential entropy (Kozachenko & Leonenko,
1987) and the modification to estimate mutual information (Kraskov et al., 2004). Let
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U = {¢;}i=12. ~ be a m-dimensional data-set and let jf’\y be an estimator for the actual
PDF Py. The differential entropy (8) can be estimated by

H(W) ~ () =~ > loga(Pa(u). )

Let ¢; be the minimal radius of the sphere centered at v); € ¥ within the k nearest neighbors
of 1; are located, for large N and large k (but k << N), Py(1);) can be estimated by

1 k

Pu() = oy (10)

where V,, is the volume of the unit ball. Equation (10) leads directly to an estimate of the
differential entropy

H(¥) = logy(N) — logy (k) + log,(V. Z log,(€:). (11)

For smaller N and/or smaller k equation (10) gives a rather bad estimate of Py and equation
(11) must be replaced by

H(W) = ($(N) = ¢(k))/log(2) + logy(V, Zlogz &),

where 1 is the digamma function (see Kraskov et al. (2004)). Let now ¥ = (U, ¥y) =
{(¥1,,19,}iz12..n be a (my + my)-dimensional data set for which we wish to estimate the
mutual information mI (U, Uy) ~ H(U;)+ H(TU,) — H(¥). Whereas H(T) can be estimated
by equation (11), to use the same distance scales in the joint and the minor spaces and to
avoid any biases the estimation of the differential entropies H(U;) and H(¥,) have to be
modified in the following way (see Kraskov et al. (2004)). Let ¢; be the minimal radius of
the sphere which is centered at ¢; € ¥ and which within the k nearest neighbors of v; are
located, then ky, is the number of data located within the sphere with radius €; centered at
1, in the space Uy and ks, is the analog number of data around 1)5,. The estimation of the
differential entropy H(¥;) is modified by

H(U,) = log,(N) + — Z logy(k1, + 1) +logy(V1,) + — Z log,(€;).

Analogous calculations are performed for the estimation of H(®,). For the estimation of
mutual information between more than two random variables the method can be easily
extended.

For all mutual information estimation performed in this study we fixed the number of nearest

neighbors by k£ = 0.006/N. Whereas N ranges between 6000 and 7136, the number of nearest
neighbors takes values between 30 and 35.
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Rank ordering of data sets The dependent components of an empirical data set are
usually measured in different units and have different scales. Large differences in scale can
cause errors in the estimation of mutual information. Note that the mutual information (7)
is preserved under any differentiable transformation f : R™ — R™ of the m-dimensional
components. To conform the scales of the components of the data sets the components are
transformed to a uniform distribution by rank ordering.

Let Px(z), v € Q C R be the PDF of a one-dimensional random variable X. Let H be the
Heaviside step function. The transformation which turns X into a uniform random variable
is

fx(z) = /QH(QC — T)P(2)dz. (12)

Let {¢; € R};—12,. ~ be a one dimensional data set. Then (12) leads directly to the approx-
imation of the uniforming procedure by

1 N

faln) =5 D H(Wi =), (13)
j=1

which is referred to as rank ordering. To perform the uniforming procedure for a two-
dimensional data set the first component is rank ordered according to equation (13). The
resulting data set can then be divided into stripes of the same width comprising the same
number of data. Regarding each stripe as a one-dimensional data set, the stripes are rank
ordered by equation (13) again. Although uniforming dissolves the internal dependence struc-
ture of the two dimensional random variable, the mutual information between the uniformed
two dimensional random variable and a separately rank ordered third random variable is not
affected.

The definition of the generalized dependence coefficient Suppose the random vari-
ables X and Y have the following joint PDF:

1 a? (z —y)?
Pla ) — T _Ey) 14
#:0) = gm0 gz ) e (-5, (14

and Px and Py are the PDFs of the constituents. There is a simple relationship be-
tween the linear correlation coefficient C'(X,Y) and the mutual information mI(X,Y) =

P(z,y) .
fsuppP P(z,y)log, (WPyy(y)) ddy:

g
CX,Y)? = 0%—1—103 (15)
1 2 2
mI(X,Y) = ;log, (Ul;"?) (16)
2
2 ot —2mI(X)Y
C(X,Y)* = U%+O_§:1—2< mI(X.X)), (17)



Motivated by equation (17) we define for a multi-dimensional random variable ¥ a normed

mutual information
m[normed<\p) =1 — 2(—2m1(\11))’ (18)

which takes values between 0 and 1, and which is referred to as a generalized dependence
coefficient. Recall that equation (17) is only valid for linear correlations and if all constituent
random variables are gaussian-distributed. However, we will use the definition (18) to con-
dense the estimated mutual information in a value between 0 and 1 for a more compact
presentation.

3 Results

3.1 Statistical interdependencies between retinal direction and
retinal speed

Figure 4 shows the estimated normed mutual informations mIm"¢4(® 4., V)) between the
distributions of direction and speed for all positions in the field of view in each of the
three conditions. The values of mI™™(dy;,. V) for the natural condition (Figure 4 A)
range from 0.04 to 0.19, with the peak in the center of the visual field. These values are
rather low suggesting that direction and speed are largely independent from each other at
all positions in the visual field. This result, however, is not a direct consequence of equations
(3), (4), (5), and (6) but rather depends on the statistical properties of the motion and depth
parameters and their combination in walking and gaze stabilization. This can be seen from
the comparison with the other two conditions.

In the condition with no gaze stabilization (Figure 4 B), mIm"™¢4(® .., V') ranges from 0.05 to
0.3 in the lower visual field and from 0.04 to 0.2 in the upper visual field. The interdependence
between retinal speed and direction is increased for a domain of the lower visual field right
under the horizontal line. This shows that the ego-motion situation influences the dependence
structure of retinal speed and direction.

In the third condition (mixed depth map, Figure 4 C), mI™™™¢d(® 4., V) varies between
0.08 and 0.16 accross the visual field. Thus, randomization of the depth structure keeps the
statistical interdependence between retinal speed and direction on the same level as in the
natural condition. Thus, the depth structure exerts less influence on the interdependence be-
tween retinal speed and direction than the ego-motion situation. However, a depth structure
with very different statistics may affect the interdependence between direction and speed.
For instance, if the scene contains only objects in great distances from the observer the
retinal motion signals are mostly caused by the rotational component of ego-motion. This
produces a higher statistical interdependence between direction and speed. Therefore, the
low statistical interdependence between direction and speed of the optic flow in the natural
condition is a particular property of ego-motion through natural settings.
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The statistical interdependence between retinal direction and speed is not dependent on
walking speed. Variation of walking speed only scales the retinal speed by a proportinality
factor. However, a statistical variation of walking speed between different motion situations
would evidently further diminish the level of statistical interdependence between retinal
direction and speed by introducing an additional statistical variance which solely affects the
statistics of retinal speed.

In the remainder of our analysis we consider the statistical properties of the distributions of
retinal direction and speed separately. This is justified by the low statistical interdependence
between direction and speed in the natural condition and facilitates the understanding and
interpretation of the results.

3.2 Properties of the distributions of speed and directions

Figure 5 shows some examples for kernel-based estimates of the PDF's of direction (measured
as deviations from the radial direction) and speed (Parzen, 1962; Silverman, 1986). All
examples are from the natural condition. They show different positions in the left visual field.
The distributions of the right visual field are essentially mirror-symmetric. The estimated
distributions of speed appear similar to logarithmic Gaussian distributions. We therefore
measure the skewness, kurtosis and negentropy for the logarithmic values of speed rather than
for the speed itself to reveal how close the speed distributions are to logarithmic Gaussian
distributions. We note the reference to the logarithm of a random variable by the prefix log
(for example log-kurtosis).

3.2.1 Properties of the distributions of directions

Figure 7 shows the visual field maps for mean, scatter, skewness, kurtosis, and negentropy for
the distributions of direction in the three conditions. First, we discuss the results concerning
the natural condition (column A). The top panel (Figure 7 Al) shows the mean of the
distributions of direction for all positions in the field of view. The mean deviates from the
radial direction by up to 12 degrees. The deviation from radial is high near the center of
the field of view and decreases towards the periphery. The variations of the deviation with
eccentricity and the absolute values of deviation are very similar in the upper and lower visual
fields. The visible cloverleaf structure in the plot shows that the means of the direction in
each quadrant are distorted towards the vertical direction: the means are negative in the left
upper visual field and positive in the left lower visual field, and vice versa for the right visual
field. A similar structure occurs in the map of the skewness of the direction distributions
(Figure 7 A3). This means that the direction distributions have longer tails at the side where
the directions are closer to the vertical direction. Consequently, the skewness vanishes for
the positions on the horizontal and vertical meridian.
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The shifts of the means and the distortions of the distributions are mainly caused by the
interplay between the mathematics of the projection and the properties of the distribution of
headings. The distribution of headings has a higher variance for the horizontal component
than for the vertical component (cf Figure 1 B). When heading is varied symmetrically
around the center along the horizontal meridian the flow vectors induced at position along
the 45 degree diagonal in the lower visual field are distributed asymmetrically around the
radial direction (Figure 6). As our flow fields include eye rotations to stabilize gaze on an
attended object in the scene, the flow vectors are additionally influenced by the properties of
the distributions of Zlf (see Equations (5) and (6)). Zif takes values between 0 and infinity.

The distribution of Zif is right skewed. The result is a further skewing of the direction
distributions. Therefore, the extend to which the resulting distributions of flow direction
are skewed depends on the interplay between the statistics of the depth structure and the
statistics of the ego-motion parameters. The different depth statistics in the upper and lower
visual fields lead to the differences in the magnitude of skewness in the upper and the lower
visual field in Figure 7 A3.

Figure 7 A2 shows the scatter of the directions around the mean. The scatter is maximal
(about 60 degrees) at the center of the field of view and decrease to around 10 degrees
in the periphery. In combination with the mean the scatter map shows that the direction
distributions in the periphery become more radial. There is not much difference between the
upper and the lower visual field.

The plots of kurtosis and estimated negentropy (Figure 7 A4 and A5) show that in large areas
of the lower visual field the kurtosis and negentropy are very small (from -0.4 to 2.0 and 0.02
to 0.08 respectively). Kurtosis and negentropy increase (up to 17 and 1 respectively) near
the horizontal meridian. However, also comparatively small deviations from zero kurtosis
and from zero negentropy, such as those in the lower visual field, give a significant difference
of the distribution from a Gaussian. For example, the distribution at position (—30,—15)
in Figure 5 A has a kurtosis of 0.44, a negentropy of 0.05, and a skewness of 0.55, and is
clearly different from a Gaussian distribution. Position (—30,15) in Figure 5 A provides an
example for a distribution with rather large values of kurtosis (6.54), negentropy (0.28), and
skewness (—1.28).

We conclude that the distributions of the directions for positions of the lower visual field are
rather close to Gaussian distributions and that extreme non-Gaussian distributions occur
near the horizontal meridian.

A comparison with the direction distributions in the non-stabilized condition (second col-
umn) and the mixed depth condition (third column) shows the influence of the statistics of
the ego-motion parameters and the depth on the distributions of retinal directions. Whereas
the cloverleaf structure in the mean exists in all conditions, the patterns of scatter, skewness,
kurtosis and negentropy show clear differences between the conditions. In the non-stabilized
and mixed depth conditions, there are no differences between upper and lower visual field.
Kurtosis and negentropy do not take as high values as some domains of the visual field in the
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natural condition. Although the distributions in both conditions are similar skewed, natural
motion parameters in combination with natural scenes have a cumulative effect on skewing
for some regions of the visual field.

3.2.2 Properties of the distributions of retinal speed

The Figure 8 shows the visual field maps for mean, scatter, skewness, kurtosis, and negen-
tropy for the distributions of retinal speed for the three conditions. Figure 8 A1l shows the
mean of retinal speed for all position in the field of view in the natural condition. Mean reti-
nal speed and scatter is zero at the center of view because of the assumed gaze stabilization.
Mean retinal speed increases in the periphery up to 20 degrees per second. Note that the
absolute values of speed would scale with walking speed, which was a constant 1.4 meter per
second in our calculations, but only by a constant factor for all flow speeds. Hence, walking
speed does not change the distribution over the field of view.

The increase of the mean speed is larger for the lower visual field than for the upper visual
field. The scatter, ranging from 0 to 11 degrees per second, on the other hand, increases
more in the upper visual field than in lower visual field. These differences between mean
and scatter show that the retinal speeds are faster and more uniform in the lower visual field
and slower and more variable in the upper visual field.

Since the appearance of the estimated distributions for speed suggests that these distributions
are Gaussians on a logarithmic scale, we measured the skewness, kurtosis and negentropy
for the logarithms of speed. This measures show how close the speed distributions are to
logarithmic Gaussian distributions. Figure 8, Panels A3, A4 and A5 show the estimated
values for the log-scatter, log-kurtosis and log-negentropy. These values are largely uniform
over the visual field. The log-skewness ranges from —0.8 to 0.8, the log-kurtosis from 0.5 to
3, and the estimated log-negentropy from 0.03 and 0.11. Although these values are rather
low, for each position either the skewness, or the kurtosis, or both values are significantly
different from zero, which we tested by the calculating the standard errors and using the re-
sulting error bars (approx. two times the standard error) as significance criterion. Therefore,
the distributions of retinal speed are significantly different from log-Gaussian distributions.
However, the small values of log-skew, log-kurtosis and log-negentropy may for practical
purposes allow to model the distributions of retinal speed by log-Gaussian distributions.

The distributions in the non-stabilized condition (see Figure 8 column B) look very similar
to those for the natural condition except for positions close to the center of view. Close to
the center of view the mean and scatter of retinal speed do not vanish in the non-stabilized
condition and do not fall below 1.3 degree per second and 1.6 degree per second, respec-
tively. In the mixed depth condition, the distributions show a complete different pattern
(see Figure 8 column C). The increases of the mean and scatter towards the periphery are
not as pronounced as in the other conditions and do not rise about 8 degree per second and
7 degree per second, respectively. Log-skewness takes only negative values across the visual
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field. Log-kurtosis is smaller than in the other conditions. Log-negentropy is in the same
range as in the natural and non-stabilized condition. These results suggest that the depth
statistics has a shaping effect on the statistics of retinal speed while the gaze stabilization
reflex affects the statistics of retinal speed only in the center of the visual field.

3.3 Dependence of the local optic flow statistics on scene structure
and ego-motion

In this section we describe the statistical dependencies of the retinal flow on the depth
statistics of the scene (depth Z and fixation depth Z;) and on the heading direction (Hy, Hyp).
The dependence on scene statistics is interesting because the speed of an element of the optic
flow depends on the distance of the element from the observer. Moreover, in case of combined
observer translation and gaze stabilization the speed and the direction of the motion vector
of the optic flow element depends on the relationship between the distance of the element
from the observer and the depth of the gaze point. Without gaze stabilization, the statistics
of the retinal direction solely depend on the statistics of the heading direction and not on
the statistics of depth. Retinal speed is only influenced by depth and not by the depth of
the gaze point.

3.3.1 Dependence of the local optic flow statistics on the depth statistics of the
scene

To reveal to what extend the optic flow in the natural condition is statistically dependent on
the depth statistics of the natural environment, we estimated the normed mutual information
between the random variables retinal flow direction ®4, and speed V and the following
random variables of the scene structure: the two-dimensional vector (1/Z,1/Zy), the inverse
depth-values %, and the quotient between the depth and the depth of the fixation point Z%

We take Z/Z; rather than 1/Z; as a single random variable because the direction of retinal
motion depends on Z/Z; not on Z; alone. Figure 9 column A shows the distribution of the
normed mutual information over the visual field for the above parameter combinations.

The estimated values for mI1""™4(® .. (1/7,1/Z;)) (Figure 9 A1) range from 0.05 to 0.6.
Positions in the lower visual field show smaller values than positions in the upper visual
field. The highest values are observed along the horizontal meridian. The estimated val-
ues for mImrmed(®y,..1/7) (Figure 9 A2) are very small and nowhere exceed 0.16. The
estimated values for mI™™(®y,., Z/7Z;) (Figure 9 A3) show a similar distribution as
mImomed (. (1/Z,1/Z;)), but with a peak of higher dependence (0.8) in the center of
view. Taken together, these plots show that the dependence of the direction of the optic
flow on the depth statistics of the scene is particularly strong in the upper visual field and
that the combination of depth Z and fixation depth Z; considerably influences the flow di-
rections in this area. In contrast, the flow directions in the lower visual field do not carry
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much information about scene structure. Finally, the statistics of 1/Z by itself has hardly
any influence on the statistics of the retinal direction (Figure 9 A2).

In the mixed-depth condition (Figure 9 column B), the dependence of direction on depth
shows only minor variation over the visual field. The differences between upper and lower
visual field in the natural conditions disappear in the mixed-depth condition. The statistical
dependence of depth (1/Z) on the statistics of flow directions remains minor. The non-
stabilized condition is not shown, because in this condition retinal direction does not depend
on the depth structure of the scene, and all values would be zero.

Figure 10 shows the statistical dependence of retinal speed on the depth structure of the
scene. Compared to retinal direction (Figure 9 A), retinal speed shows an almost opposite
dependence on the statistics of depth in the scene in the natural condition (Figure 10 column
A). The estimated values for mI™™(V, (1/7Z,1/Z})) vary between 0.6 and 0.97 (Figure 10
A1), with smaller values in the lower visual field and high values in the upper visual field.
The estimated values for mI™™(V,1/Z) (Figure 10 A2), range from 0.58 to 0.97 and
show a visual field distribution similar to that of mIm™4(V,(1/Z,1/Z;)). The estimated
values for mI"r™(V, Z/7Z;) (Figure 10 A3) range between 0.05 and 0.5. They show a
minor influence of Z/Z; on the statistics of retinal speed for the lower visual field and a
moderately increased statistical dependence for the upper visual field. The latter is caused
by an increased statistical dependence between 1/Z and Z/Z for the upper visual field (data
not shown). We therefore conclude that the dependence of the distributions of retinal speed
on the depth statistics of the scene is mainly carried by 1/Z.

In the non-stabilized condition, retinal speed depends only on 1/Z. The estimated statistical
dependence of retinal speed on 1/Z resembles the estimated data in the natural condition
(see Figure 10 B2 ). In the mixed-depth condition, retinal speed is highly dependent on
depth at all positions of the visual field but the dependence on depth is symmetric between
upper and lower field.

We find that considering scenes with a non-natural depth statistics results in completely
modified statistical dependencies between depth and retinal optic low. Thus, we conclude
that these dependencies are specific in the case of natural scenes.

3.3.2 Dependence of the local optic flow statistics on the statistics of heading

The dependence of the statistics of the retinal direction on the statistics of the observer’s
heading is shown in Figure 11. Column A depicts the natural condition. The estimated
values for mIm"™m(®y;,. (Hy, Hy)) (Figure 11 Al), range between 0.5 and 0.99 and thus
reveal a strong statistical influence of heading on the flow direction. This influence is much
more pronounced in the lower visual field than in the upper visual field. This observation
is in accordance with the observation in the previous section that the depth statistics have
a larger influence in the upper visual field than in the lower visual field. This increased
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dependence on depth in the upper visual field disturbs the linkage to the heading.

Panels A2 and A3 show how the retinal flow directions are influenced by the vertical and
horizontal heading components Hy and H, separately. H, has a strong influence on the
statistics of retinal flow direction for eccentric positions on the vertical meridian. Hy has the
highest influence at eccentric positions along the horizontal meridian.

In the non-stabilized condition, retinal direction is completely predicted by the heading
direction, as all retinal motion is radially away from the heading point (focus of expansion).
This means that the mutual information between the distribution of directions and heading
is infinite. However, as in the natural condition the different components of heading have
different statistical influence on retinal direction for different domains of the visual field,
but the generated bulges of high normed mutual information values are broader than in the
natural condition and do not show the abrupt decrease in the center of the visual field (see
Figure 11, Panels B2 and B3). According to the certainty that in the non-stabilized condition
the depth structure of the scene has no influence on the statistical behavior of flow directions,
there are no differences of the estimated mutual information values between the upper and
the lower visual field. In the mixed depth condition the statistical influence of heading on
the statistics of flow directions are decreased for the lower visual field and increased for the
upper visual field compared with the natural condition (see Figure 11 column C). This is a
result of the influence of the parameter Z/Z; on the statistics of retinal flow direction (see
Figure 10 B3). The distribution of normed mutual information for the components H, and
Hy is similar to that of the natural condition, but rather than drop near the center of view
as in the natural condition, the distributions rise in the center of view (see Figure 11, Panels

C2 and C3).

Figure 12 shows the dependence of the statistics of the retinal speed on the statistics of
the observer’s heading. In the natural condition (Figure 12 A1), the estimated values for
mlImormed(V, (Hy, Hy)) (Figure 12 A1), which vary between 0 and 0.77, indicate only a modest
statistical influence of heading on the statistics of retinal speed. Similar to retinal direction,
the influence is more pronounced in the lower visual field than in the upper visual field.

The restriction of the statistical influence to the lower visual field is also seen for the sepa-
rate vertical and horizontal heading components Hy and H, (Figure 12 A2 and A3). This
correlates with the diminished effect of the statistics of depth on the retinal speed for the
lower visual field. However, the heading components Hy and Hy assert their influence in
different parts of the lower visual field. H, influences retinal speed along the diagonals in
the lower visual field whereas Hy influences retinal speed near the vertical meridian in the
lower visual field.

In the non-stabilized condition (Figure 12, column B) there is more statistical dependence
in the upper visual field but the dependence in the lower visual field is very similar to that
in the natural condition. In the mixed depth condition, heading has hardly any statistical
influence on retinal speed (Figure 12 column C).
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Together, the different influences of H, and Hy on retinal direction (Figure 11) and retinal
speed (Figure 12) can be explained by the following consideration: A horizontal deviation
of heading from straight ahead causes a deviation of the retinal flow direction from radial
for the flow elements close to the vertical meridian. Close to the horizontal meridian the
direction of flow vectors is less affected, because mainly the speeds are increased or reduced
there. Analogously, the statistical dependence of flow direction along the horizontal meridian
is higher for the vertical heading direction. However, the counter-rotation of the retina in
the case of gaze stabilization affect the statistical influence of the components of heading by
keeping the directions closer to radial.

These observations show that the statistical dependencies of retinal optic flow on heading
are shaped by both the geometry of natural scenes and the properties of natural ego-motion.
Altering either the ego-motion parameters, or the depth statistics, considerably changes the
dependence structure between retinal optic flow and heading.

3.4 Summary and Discussion

The results show how the structure of the retinal flow depends on the scene statistics and the
ego-motion statistics. The principle dependence of the retinal flow on these parameters is
clear from the geometrical properties of flow generation (Longuet-Higgins & Prazdny, 1980).
However, the particular relevance of individual parameters in natural situations depends on
the statistics of these parameters in the natural context. In the natural condition, the random
variables retinal speed and retinal direction show rather low statistical interdependencies at
almost all positions in the visual field. This statistical independence between retinal speed
and retinal direction in the natural condition allows to efficiently encode both parameters
independently, as is the case in motion sensitive neurons in visual cortical area MT. These
neurons have largely independent tuning curves for direction and speed (Rodman & Albright,
1987). Gaze stabilization plays an important role for the independence between retinal speed
and direction. Without gaze stabilization there is a much higher statistical interdependence
between retinal speed and retinal direction for large domains of the lower visual field. Since,
this increase occurs only in the lower visual field the depth structure appears to have also a
strong influence on these interdependencies.

The distributions of retinal speed and retinal direction are strongly influenced by the un-
derlying statistics of depth and ego-motion parameters. The statistical properties of the
distributions measured for the different conditions differ strongly in their behavior over the
field of view. In the natural condition, differences between the upper and the lower visual
field are clearly visible for both retinal flow direction and retinal speed. In the non-stabilized
condition, in contrast, differences between upper and lower visual field only occur in the
distributions of retinal speed. This is because depth has no influence on flow direction in the
non-stabilized condition. The statistical differences for the upper and the lower visual field
are caused by different depth statistics for the upper and the lower visual field. Most natural
scenes consist of objects on a ground surface. The ground surface may be flat, or form dips
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and humps, or it can decline or rise. But in each scene, the ground confines the maximal
depth at each positions of the visual field. Therefore, the existence of a ground in natural
scenes generates an asymmetry in the depth statistics between positions in the upper and
the lower visual field and restricts the variability of depth in the lower visual field. This
asymmetry underlies all observed asymmetries between upper and lower visual field in the
flow statistics. When the asmmetry in the depths statistics are destroyed in the mixed-depth
condition, the differences in optic flow statistics between the upper and the lower visual field
vanish. All statistical variations between different positions in the field of view in that con-
dition are caused by the mathematical rules behind optic flow generation and the statistics
of heading. However, the asymmetries between upper and lower visual field in the natural
condition arise not just from the depth distribution alone, but rather from a combination of
the depth distribution and the natural ego-motion parameters.For instance, many properties
of the flow distributions in Figure 11 are symmetric between upper and lower field also in
the non-stabilized gaze condition. Regarding the properties of early motion detectors our
results coincides with the findings in Zanker & Zeil (2005), who also state differences in the
distributions of the responses of early motion detectors between the upper and lower visual
field for straight motion through natural scenes.

One may predict properties of motion sensitive neurons from the statistics of retinal optic
flow according to the principle of efficient encoding, particular with respect to the dependence
of tuning properties on the positions of the receptive field. The variation of the distributions
of retinal speed and directions over the visual field may explain the variation of properties
of neurons encoding different positions in the visual field. Thus, populations of neurons
encoding for optic flow near the center of the visual field should be more sensitive for low
speed but for a large range of retinal directions, whereas populations of neurons encoding
for optic flow more peripherally should be more sensitive for large retinal speed but for more
radial retinal directions (cf for instance (Albright, 1989) for such distributions in the primate
cortical area MT). The tuning curves of such neurons should account for quantities such as
skew and kurtosis, which might effect the proportion of sharply and broadly tuned neurons
as well as the tuning in individual cells. Furthermore, the peripheral increase of the size
of the receptive field of motion processing neurons in area MT seems to be well adapted
to the structure of natural flow fields (Calow et al., 2005). More quantitative predictions
may be derived from an analysis of efficient encoding of optic flow based on the measured
distributions.

Our analysis reveals that the dependence of retinal speed and direction on the set of ego-
motion and scene parameters varies considerably across the visual field. In the natural
condition, the influence of the depth statistics on the retinal speed is strongest in the upper
visual field and much weaker in the lower visual field. Since optic flow depends on depth and
heading, an increase in the statistical influence of one parameter must be accompanied by
a decrease of the statistical influence of another parameter. Therefore, the reduction of the
influence of the depth statistics on the retinal speed coincides with an increased influence of
the statistics of heading on the statistics of retinal speed at the lower visual field. This is
true also in the non-stabilized condition. The finding that the dependence of retinal speed
on depth is highest in the mixed depth condition shows that retinal speed can be regarded as
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directly linked to the depth map of the scene, at least for the upper visual field. For the lower
visual field, the dominance of the ground and the associated decrease in the variation of the
depth over different scenes increases the statistical influence of the remaining parameters.

The statistics of retinal direction in the natural condition, on the other hand, are independent
of the statistics of depth throughout most of the visual field. The same is true in the mixed
depth condition. However, retinal direction is linked to the statistics of the combination of
depth and depth of fixation in terms of the quotient Z/Z;. This quotient separates the scene
in foreground (entities closer than the fixation point, Z/Z; < 1) and background (entities
more distanced than the fixation point, Z/Z; > 1). The dependence of direction on Z/Z;
is most pronounced near the horizontal meridian, presumably because variation in depth
relative to the depth of fixation occurs most frequently in that area of the scene image.

It is conceivable that the tight statistical linking of optic flow to the depth structure of the
scene enables the brain to reconstruct a good relative depth map of the scene from the motion
signals. In the natural condition, heading influences the statistics of direction and speed of
the retinal motion to different degrees. This is especially pronounced in the lower visual field.
Heading has the largest influence on the statistics of direction. The influence of heading
on retinal speed remains minor. The azimuth and the elevation component of heading have
mutually exclusive statistical influence on the retinal flow direction. The azimuth component
and the elevation component of heading are statistically independent (mI™™™*d(H,, Hq) =
0.0032) in the distribution we used. The strong statistical influence of one heading component
in a certain domain of the visual field leads to a high correlation between the directions
of flow vectors within that domain and to a lower correlation between the directions of
flow vectors lying in domains which are influenced by the other heading component. We
leave the quantitative investigation of the statistical correlation between flow vectors at
different position of the field of view and the extraction of possible independent components
or patterns for future work. But detection of such flow patterns requires receptive fields,
which fully contain the extend of the pattern. Therefore, the sizes of the domains of a
high statistical influence of a certain heading component on retinal flow might also predict
the sizes of the receptive fields of heading sensitive neuron. Heading estimation from optic
flow is processed in the medial superior temporal (MST) brain area, which receives most
of the incoming information from motion sensitive neurons in area MT and which is widely
accepted to process patterns of optic flow (Duffy & Wurtz, 1991; Tanaka & Saito, 1989;
Lappe, 1996). The large receptive field of neurons in area MST are therefore consistent
with the large extend of the domains of a high statistical influence of the azimuth and the
elevation component of heading on retinal optic flow, particularly in the periphery.

Our study was performed with human-like ego-motion. It is difficult to speculate how the
local statistics of retinal velocity will differ for other animals. The height of the eyes above
ground may quantitatively alter the statistics, particularly in the lower visual field. However,
Zanker & Zeil (2005) reported that the properties of motion signal distributions in the
upper visual do not change much with variation of the height of the camera field. Many
higher animals that live mostly on the ground, in similar environments, and perform gaze-
stabilization reflexes will qualitatively encounter similar local statistics of optical flow. To
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what extend the statistics will change quantitatively for different species is an interesting
question for future work.
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Figure 1: A: Panoramic projection of 3D data of a range-image, The grey values encode the intensity of
the reflected laser beam. B: measured gaze directions projected onto the azimuth-elevation plane, C: Retinal
flow field generated by a leftward motion and a gaze stabilizing eye movement through the scene depicted
with the white frame in A. The motion direction is depicted by a cross. The direction of gaze is depicted by
a disc.
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Figure 2: Measured distributions of retinal velocity for 9 different positions in the left visual field. The

numbers in each panel give the visual field position in spherical coordinates ((;NS, 9) in degrees. First row:
positions in the upper field of view, middle row: horizontal meridian, third row: lower field of view.
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Figure 3: Examples of scatter plots of the dependence of retinal speed on inverse depth (A), elevation of
heading (B), azimuth of heading (C), The data are from the visual field position (—5°, —18°).
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Figure 4: Statistical dependence between retinal speed and direction. Three-dimensional plots and contour
plots of the estimated normed mutual informations mrl "Ormed(q)dir, V') between retinal flow direction and
retinal speed as function of the position of the visual field for different conditions.
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Figure 5: Examples of kernel-based density estimations for direction (A) and retinal speed (B). Nine
positions in the left visual field are shown.
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Figure 6: In the case of straight forward ego motion without rotations, the same horizontal deviation of
heading to the left and to the right respectively results in different deviations from the radial direction for
the resulting flow vectors. The distribution of flow directions is skewed.
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Figure 9: Statistical dependence between direction and depth. Estimated normed mutual information in
the natural and the mixed depth condition plotted over the visual field. 1: mI™™™¢d (&4, (1/Z,1/Z}))
between retinal direction ®4;, and depth structure (1/2,1/Zy), 2: mI normed (§ ... 1/7) between ®4;, and
the inverse of depth 1/Z, 3: mInor™med (oy,,., Z/Z #) between ®4;, and the quotient of depth and fixation
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Figure 10: Statistical dependence between speed and depth. Estimated normed mutual information in
the different conditions plotted over the visual field. 1: mI™™™¢d (V,(1/Z,1/Z;)) between retinal speed
V and depth structure (1/Z,1/Zf), 2: mI""™? (V,1/Z) between V and the inverse of depth 1/Z, 3:
mlInermed (V, Z/Z ) between V and the quotient of depth and fixation depth Z/Z
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1 Introduction

The detection of the independently moving objects (IMOs) can be considered
as an exponent of the obstacle detection problem, which plays a crucial role in
traffic-related computer vision. Vision alone is able to provide robust and reli-
able information for autonomous driving or guidance systems in real time but
not for the full spectrum of real world scenarios. The problem is complicated
by ego-motion, camera vibrations, imperfect calibrations, complex outdoor en-
vironments, insufficient camera resolutions and other limitations. The fusion
of information obtained from multiply sensors can dramatically improve the
detection performance [12, 31, 2, 3, 4, 9, 17, 30, 19, 13, 16, 5, 29, 18, 10, 32].

In Table 1 we present a chronological list of studies which are related to
sensor fusion in traffic applications and which are relevant to the considered
topic. Various sensors can be used for traffic applications: video (color or
gray scale) cameras in different setups (monocular, binocular or trinocular),
IR (infra red) cameras, LIDAR (Light Detection and Ranging), radar (Radio
Detection and Ranging), GPS/DGP (Global Positioning System/Differential
GPS) as well as data from vehicle IMU (Inertial Measurement Unit) sensors:
accelerometer, speedometer, odometer and angular rate sensors (gyroscopes).
There are a number of approaches to fusion characterization [11, 8, 26, 37]
but, most frequently, fusion is chartacterized by the abstraction level:

1. Low (signal) level fusion combines raw data provided directly from sensors,
without any preprocessing or transformation.

2. Intermediate (feature) level fusion aggregates features (e.g. edges, corners,
texture) extracted from raw data before aggregation.

3. High (decision) level fusion aligns decisions proposed by different sources.

Depending on the application, several different techniques are used for fu-
sion. Matching of the targets detected by different sensors is often used for
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obstacle detection. Extensions of the Kalman filter (KF) [15](e.g. extended
Kalman filter (EKF) and unscented Kalman filter (UKF) [14]) are mostly in-
volved in estimation and tracking of obstacle parameters, as well as in egopo-
sition and egomotion estimation.

In this study, we propose a novel approach based on data fusion on different
levels for IMO detection and -description. In the proposed model only three
sensors are used: stereovision, speedometer and LIDAR. The flow diagram of
the model is shown on Fig. 1. The IMOs detected by vision are matched with
obstacles provided by LIDAR. In the case of a successful matching, the de-
scriptions of the IMOs (distance, relative speed and acceleration) are retrieved
using ACC (Adaptive Cruise Control) LIDAR data, or otherwise these descrip-
tions are estimated based on vision. Absolute speed of the IMO is evaluated
using its relative velocity and egospeed provided by the speedometer.

IMU )
sensors » Fusion
(speedometer)
Recognition & Vehicles
classification likelihood == Segmented
. maps e ’
Vision Leden P classified and
sensor described IMOs
(cameras) Visual cues Independent ¥
- optical flow motion —
- egomotion "
- stereo disparity maps Fusion
(matching)
Gr. plane Ground
estimation plane Updated IMOs
ACC Obstacles Obstacles
# - position i i —
sensor - relative speed PI‘O]eCtIOFI . map .
(LIDAR) - acceleration (image domain)

Fig. 1. Flow-diagram of the proposed model.

In order to validate the model we have used the data obtained in the
frameworks of the DRIVSCO and ECOVISION European Projects. In record-
ing sessions a modified Volkswagen Passat B5 was used as a test car. It was
equipped by Hella KGaA Hueck & Co.

2 Vision sensor data processing
For vision-based IMO detection, we used an approach proposed by Chumerin

and Van Hulle [7]. This method is based on the processing and subsequent
fusing of two cooperative streams: the independent motion detection stream
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Table 1. Sensor fusion for traffic applications papers short overview

Study

Sensors

Cues/Features

Fusion method

Handmann et al.
[12]

Stiller et al. [31]

Becker and Simon

(2]

Kato et al. [17]

Fang et al. [9]

Steux et al. [30]

Hofmann et al. [13]

Laneurit et al. [19]

Sergi [28]

Sole et al. [29]

Blanc et al. [5]

Labayrade et al.
(18]

Thrun et al. [33]

Bombini et al. [6]

monocular vision,
radar

stereo vision, radar,
LIDARs,
DGPS/INS

stereo vision,
DGPS, vehicle
sensors, LIDARs,
radar

video camera
(monocular), radar

video cameras
(stereo), radar

color video camera
(monocular), radar

color video camera
(monocular), BW
video camera
(monocular), radar,
ACC-radarsensors

vision, GPS,
odometer, wheel
angle sensor,
LIDAR

vision, LIDAR,
DGPS

monocular camera,
radar

IR camera, radar,
LIDAR

stereo vision,
LIDAR

color video camera
(monocular), GPS,
LIDARs, radars,
accelerometers,
gyroscopes

gray-scale video
camera
(monocular), radar

color, edges, texture (local
image entropy), (up to 3)
obstacle positons

horizontal edges, stereo

disparity, optical flow, 2D range
profile, global egoposition and

egoorienation

local egoposition and

ego-orientation (w.r.t. lane),

global egoposition and
ego-orientation, egospeed,

egoacceleration, steering angle,

2D range profile

Kanade-Lucas-Tomasi feature

points, range data

edges, stereo disparity, depth

ranges

shadow position, rear lights

position, symmetry, color, 2D

range profile

lane position and width, relative
egoposition and ego-orientation

(w.r.t. road), radar-based
obstacles

relative egoposition and

ego-orientation (w.r.t. road),

global egoposition and

ego-orientation, steering angle,

pathlength, LIDAR-based
obstacle profile

video stream, global egoposition

and ego-orientation,

LIDAR-based obstacle profile

horizontal and vertical edges,

’pole like’ structures, radar
target,

IR images, range profile

stereo disparity, “v-disparity”,

lighting conditions, road

geometry, obstacle positions

color images, global egoposition
and ego-orientation, egospeed,
short-range profile (LIDARs),
long-range obstacles (radars)

vertical edges symmetry,

horizontal edges, radar-based

obstacles

MLP

Kalman filter

Kalman filter

frame-to-frame feature
points coupling based on
range data

depth-based target edges
selection and contour
discrimination

belief network

extended Kalman filter

Kalman filter

Kalman filter

matchingpurpose

Kalman filter, matching

matching, Kalman filter,
belief theory based
association

Unscedted Kalman Filter

search and matching
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and the object recognition stream. The recognition stream deals with static
images (i.e., does not use temporal information) and therefore can not dis-
tinguish between independently moving and static (i.e., with respect to the
environment) objects, but which can be detected by the independent motion
stream. One should note that the idea of the two processing streams is widely
accepted in the visual neurosciences [34].

2.1 Vision sensor setup

In the recording sessions, we used a setup with two high resolution progressive
scan color CCD cameras (see Table 2). The camera rig was mounted inside
the cabin of the test car (see Fig. 2) at 1.240 m height above the ground,
with 1.83 m from the frontend and 17 cm displacement from the middle of
the test car towards the driver’s side. Both cameras were oriented parallel to
each other and to the longitudinal axis of the car and look straight ahead into
the street. Before each recording session, the cameras were calibrated. Raw
color (Bayer pattern) images and CAN-bus data were stored for further off-
line processing. In the model, we used rectified gray-scale images downscaled
to a 320 x 256 pixels resolution.

Table 2. Video sensor specifications

Sensor parameter  Value

Manufacturer JAI PULNiX Inc.
Model TMC-1402Cl
Field of View 53° x 42.4° (horizontal X vertical)

Used resolution 1280 x 1024
Used frequency 25 fps

Color RGB Bayer pattern
Interocular distance 330 mm

Focal length 12.5 mm

Optics Pentax TV lenses

2.2 Independent motion stream

The problem of independent motion detection can be defined as the problem
of locating objects that move independently from the observer in his field of
view. In our case, we build so-called independent motion maps where each
pixel encodes the likelihood of belonging to an IMO. For each frame we build
an independent motion map in two steps: early vision cues extraction and
classification.
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Fig. 2. Setup of the cameras in the car.

As vision cues we consider: stereo disparity (three components — for cur-
rent, previous and next frame), optical flow (two components) and normal-
ized coordinates' (two components). The optic flow and stereo disparity are
computed using multiscale phase-based optic flow and stereo disparity algo-
rithms [25, 27]. Unfortunately, there are no possibilities to estimate reliably
all these cues for every pixel in the entire frame. This means that the motion
stream contains incomplete information, but this gap will be bridged after
fusion with the recognition stream.

Fusion part Classification part
Cue 1

Cue 2
Cue 3
Cue 4
Cue 5
Cue 6
Cue 7
Cue 8

Cue D

sed cue l >

sed cue

Class
predicion

sed cu

Fig. 3. MLP used as classifier in independent motion stream.

We consider each pixel as a multidimensional vector with visual cues as
components. We classify all the pixels (which have every component prop-
erly defined) in two classes: IMO or background. We have tried a number of
setups for classification, but the optimal performance was obtained with a

! By a normalized coordinate system on a frame we mean the rectangular coordi-
nate system with origin in the center of the frame, where the upper-left corner is
(—=1,—1) and the lower-right corner is (1, 1).

66



6 Nikolay Chumerin and Marc M. Van Hulle

multilayered perceptron (MLP) with three layers: a linear (4-8 neurons), a
nonlinear layer (8-16 neurons), and one linear neuron as output. For training
purposes, we labeled the pixels in every frame of a number of movies into
background and different IMOs, using a propriety computer-assisted labeling
tool (see Fig. 4).

_IMasked by visible abels
_Irooped by visible labels
57 Savedtrain

Output direct.../home/nick fwork/ Frojects/MCCOOR/myLabel foutput i DR i s ey
Labels direct...| fhuge_sidoni i

Fig. 4. myLabel — a tool for manual labelling video sequences.

After training, the MLP can be used for building an IMO likelihood map
I for the entire frame:

I(z,y) =p(IMO|(z,y)), (1)

where x,y are pixel coordinates. Fig. 5 shows an example of a IMO likelihood
map obtained using the proposed approach.

2.3 Recognition stream

For the recognition of vehicles and other potentially dangerous objects (such
as bicycles and motorcycles, but also pedestrians), we have used a state of
the art recognition paradigm — the convolutional network LeNet, proposed by
LeCun and colleagues [20]. Modifications of LeNet were successfully apllied
to generic object recognition [21] and even to obstacle avoidance in an au-
tonomous robot [22]. We have used the CSCSCF configuration of LeNet (see
Fig. 6) comprising six layers: three convolutional layers (CO, C1, C2), two
subsampling layers (S0, S1) and one fully connected layer (F). As an input,
LeNet receives a 64 x 64 gray-scale image. Layer CO convolves the input with
ten 5 x 5 kernels, adds (ten) corresponding biases, and passes the result to a
squashing function? to obtain ten 60 x 60 feature maps.

2 f(z) = Atanh(Sz), A = 1.7159 and S = 2/3 according to [20].
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Fig. 5. (Left) Frame number 342 of motorway3 sequence. (Right) Matrix I, output
of the motion stream for the same frame. Value I(z,y) is defined as probability of
pixel (z,y) being part of an IMO.

64x64 60x60x10 30x30x10 26x26x16  13x13x16 1x1x180 1x1x7

5x5 —

D\

T
CO-layer SO-layer Cl-layer Sl-layer C2-layer: F-layer
10 kernels (2x2) 64 kernels (2x2) 2880 kernels (fully
(5%5) (5%5) (13x13)  connected)

Fig. 6. LeNet — a feed-forward convolutional neural network, used in the recognition
stream.

In layer SO, each 60 x 60 map is subsampled to a 30 x 30 map, in such a
way that each element of SO is obtained from a 2 x 2 region of C1 by summing
these four elements, by multiplying with a coefficient, adding a bias, and by
squashing the end-result. For different SO elements, the corresponding C1’s
2 x 2 regions do not overlap. The SO layer has ten coefficient-bias couples
(one couple for each feature map). Computations in C1 are the same as in
CO with the only difference in the connectivity: each C1 feature map is not
obtained by a single convolution, but as a sum of convolutions with a set of
previous (S0) maps (see Table 3). Layer S1 subsamples the feature maps of
C1 in the same manner as SO subsamples the feature maps of CO. The final
convolutional layer C2 has kernels sized 13 x 13 and 180 feature maps which
are fully connected to all 16 S1 feature maps. It means that the number of C2
kernels is 16 x 180 = 2880, and the corresponding connectivity matrix should
have all cells shaded. The output layer consists of seven neurons, which are
fully connected to C2’s outputs. It means that each neuron in F (corresponding
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to a particular class background, cars, motorbikes, trucks, buses, bicycles and
pedestrians) just squashes the biased weighted sum of all C2’s outputs.

C1 featre maps

89|10

SO featuramgps
OO N[O WIN|FO

Table 3. SO-C1 connectivity matrix. A shaded cell which belongs to the i-th column
and j-th row indicates that the j-th feature map of SO participates in the compu-
tation of the i-th feature map of Cl. For example, to compute the fourth feature
map of C1, one has to find a sum of convolutions of SO feature maps 0, 8 and 9 with
corresponding kernels. The number of kernels in C1 (the number of shaded cells in
the table) is 64.

LeNet scans the input image (left frame) in two scales, 320 x 256 and
640 x 512, with a 64 x 64 sliding window and in 8 and 16 steps, respectively.
For each position of the sliding window, we add the output of the class to
the corresponding (window) range in a 320 x 256 matrix. In such a way, we
obtain seven matrices Ry, ..., Rg which, after normalization, are regarded as
likelihood maps for the considered classes (see Fig. 7).

Note that, for further processing, the most important map is Ry, which
corresponds to the background class and the so-called non-background map
is obtained as (1 — Rg). The rest of the maps Ry, ..., Rg are responsible only
for IMO classification.

2.4 Training

For training both streams, we used two rectified stereo video sequences, each
consisting of 450 frames. We have labeled IMOs in all left frames of the se-
quences. These labels were used for training the motion stream classifier.

We have used small batches with the increasing size version of the BFGS
Quasi-Newton algorithm for the independent motion classifier training. Sam-
ples for each batch were randomly taken from all the frames of all the scenes.
Training was stopped after reaching 0.04 (MSE) performance.

To train LeNet, we have prepared a dataset of 64 x 64 grayscale images
(approximately 67500 backgrounds, 24500 cars, 2500 motorbikes, 6200 trucks,
1900 bicycles, 78 buses, and 3500 pedestrians). We have doubled the dataset
by including horizontally flipped versions of all the samples. Images were
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Fig. 7. (Left) Frame number 342 of motorway3 sequence. (Right) Output of the
recognition stream for the same frame. Here, we used different colors to present
different classes: black for background, red for cars, blue for motorcycles and green
for trucks.

taken mainly from publicly available object recognition databases (LabelMe?,
VOC?). A stochastic version of the Levenberg-Marquardt algorithm with diag-
onal approximation of the Hessian [20] was used for LeNet training. Training
was stopped after reaching a misclassification rate less than 1.5%. To increase
the robustness of the classification, we have run the training procedure sev-
eral times, every time by adding a small (2%) amount of uniform noise and
by randomly changing the intensity (97-103%) of each training sample.

2.5 Visual streams fusion

Fusion of the visual streams for a particular frame is achieved in three steps.

1. Intersection of the independent motion map I with the mask M of the
most probable locations of the IMOs in the frame (see Fig. 8):

Fi(z,y) = I(z,y) M (z,y). (2)

2. Intersection of the previous result F; with the non-background map (1 —
Ro):

FQ(xay):Fl(xay)(l_RO(xay)) (3)
3. Intersection of the previous result F5 with the likelihood maps Ry, ..., Rg
of each class, which results in six maps L1,...,Lg (one for each class,

except the background):

Li(z,y) = Fo(z,y)Ri(x,y), k=1,...,6. 4)

3 http://labelme.csail. mit.edu/
* http://www.pascal-network.org/challenges/VOC/
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The first step is necessary for rejecting regions of the frame where the appear-
ance of the IMOs is implausible. After the second step we obtain crucial infor-
mation about regions which have been labeled as non-backgrounds (vehicles
or pedestrians) and which, at the same time, contain independently moving
objects. This information is represented as the saliency map F», which we will
further use for IMO detection/description and in the tracking procedure. The
third step provides us the information needed in the classification stage.

—e T

Fig. 8. Matrix M, masking regions of possible IMO appearance in a frame.

3 IMO Detection and Tracking

For detecting an IMO, we have used a simple technique based on the detec-
tion of the local maximas in the maps defined in (3). We have performed a
spatio-temporal filtering (i.e. for i-th frame we apply smoothing of a three-
dimensional array — a concatenation of the (i —2)-th, (i — 1)-th, i-th, (i+1)-th
and (¢ 4+ 2)-th two-dimensional maps along the third time-dimension). Then
we search for local maximas in the entire (i-th) filtered frame and consider
them as the IMO centers xj, for this frame.

For tracking IMOs, we have introduced a parameter called tracking score.
For a particular IMO, we increase this parameter when, in the next frame,
only in a small neighborhood of the IMO center there is a good candidate for
the considered IMO in the next frame, namely the IMO with the same class
label, and approximately with the same properties (size, distance and relative
speed in depth). Otherwise, the tracking score is decreased. An IMO survives
while the tracking score is above a fixed threshold. The tracking score works
as a momentum and allows the system to keep tracking an IMO even when
there are no sufficient data in the next few frames.
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4 Classification and description of the IMOs

As soon as we are able to detect IMOs, it becomes possible to classify them
and to retrieve their properties (size, absolute speed in depth, relative speed
in depth, time to contact, absolute acceleration, etc).

We define the class ¢, of the k-th IMO as:

cp = arg max. {Le(xe)}, ()

where xj, = (ig, ji) is the center of the k-th IMO (in image domain D) and
L. are the maps, defined in (4).

For the k-th IMO’s size, oy, estimation, we search for a o > 0, where the
first minimum of the function (6) takes place.

Aw(o) = /D A PCSIS (6)

The IMO’s distance estimation is a crucial point in the retrieval process.
Using an averaged (in a small neighborhood of the IMO’s center) disparity and
known calibration parameters of the two cameras, we have computed the dis-
tance to the IMO. To compensate for instabilities in the distance estimations,
we have used a robust linear regression based on the previous five estimates.

Most of the present-day motor vehicles are being equipped with an increas-
ing number of electronic devices, including control units, sensors, actuators,
etc. All these devices communicate with each other over a data bus. Dur-
ing recording sessions, we have stored the egospeed provided by test car’s
speedometer.

The relative speed in depth, we estimated as the derivative (with respect
to time) of the distance using robust linear regression based on the last five
estimations of the distance. To estimate the time to contact, we have divided
the averaged distance by the averaged relative speed in depth. Using the
precise value of the ego-motion speed from the CAN-bus data, and simply by
adding it to the relative speed in depth we have also obtained the absolute
speed in depth of the considered IMO.

The derivative of the absolute speed in depth can be considered as an
estimation of the acceleration (it is true only in the case when the ego-heading
is collinear to the heading of the IMO). An example of IMO tracking and the
retrieved properties is shown in Fig. 9.

5 LIDAR sensor data processing

The ACC system of the used test car was able to detect and track up to ten
obstacles, when in the range of the LIDAR sensor. In addition to position, the
ACC can also provide information about relative lateral extent and speed of
the tracked obstacle.
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IAC :car-2
distance 23749 m

MO : motorhike-1
distance 1589 m
relative speed : 19.60 kmih
ahsolute speed : 112.75 km/h
acceleration  : 026
fracking score : 6223

trackinyacking score : 0,91

Fig. 9. Vision-based IMOs detection, classification, description and tracking result.

5.1 LIDAR sensor setup

We used data recorded by the test car equipped with the LIDAR sensor man-
ufactured by Hella KGaA Hueck & Co (see Table 4 for specifications). The
sensor was mounted in the test car at 30 cm height above ground, with 18 cm
from the frontend and 50 cm from the middle of the car to the driver’s side
(see Fig. 10). The ACC system analyzes raw LIDAR data and tracks up to
10 targets within a distance of up to 150 m. The tracking data are updated
and available for recording via the CAN-bus (Flex-ray) every 60 ms. Each
tracked target is described by its distance, lateral position (left and right
edges), relative velocity and acceleration.

Table 4. LIDAR sensor specifications

Sensor parameter Value

Manufacturer Hella KGaA Hueck & Co

Model IDIS 1.0

Field of view 12° x 4° (horizontal X vertical)

Range up to 200 m

Description 12 fixed horizontally distributed beams, each beam ob-

serves a 1° x 4° angular cell

5.2 Ground plane estimation

The LIDAR provides the depth and lateral position of the detected obstacles.
This information is not sufficient for the correct projection of the obstacles
onto the video frame. In order to estimate the missing vertical components (in
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lateral axis

Fig. 10. ACC LIDAR configuration.

the frame domain) of the IMOs we assume that all IMOs are located near the
dominant ground plane. Here we use a strong assumption of road planarity,
which is not met in all driving scenarios and could introduce bias. However, in
our model, the positions of the LIDAR-based obstacles are used only to verify
(confirm) vision-based obstacles, so that the bias caused by the non-planarity
of the road is to a large extend unimportant.

In order to estimate the ground plane, we estimate the disparity plane, then
map the set of points from the disparity domain into a 3D world domain, and
finally fit a plane through the projected set.

Before the disparity plane estimation, we intersect the disparity map with
the predefined road mask (see Fig. 11, left panel). By this step, we filter out
the majority of pixels which do not belong to the ground plane and are outliers
in the disparity plane linear model:

A:D=az+By+, (7)

where (z,y) are pixel coordinates and D is disparity.

The disparity plane parameters «, 8 and « are estimated using IRLS (Tter-
atively Reweighted Least-Squares) with weight function proposed by Beaton
and Tukey [1] and tuning parameter ¢ = 4.6851.

For the ground plane parameters estimation, we choose a set of nine points
(3 x 3 lattice) in the lower half of the frame (see Fig. 11, right panel). Dispar-
ities for these points are determined using the estimated disparity plane (7).
Given the disparities and camera calibration data, we project the selected
points into a 3D world coordinate system. In addition, we add two so-called
stabilization points which correspond to the points where the front wheels of
the test car are supposed to touch the road surface. For the inverse projection
of the stabilization points, we use parameters of the canonic disparity plane: it
is a disparity plane which corresponds to the horizontal ground plane observed
by cameras in a quiescent state. The parameters of the canonic disparity plane
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~)_ground plane estimation, based or stareo diaparity [town 027251 [l E3

Pause

Fig. 11. (Left) Predefined road mask. (Right) Example of the ground plane esti-
mation. Red points represent points used for ground plane estimation (see text).

and positions of the stabilization points were obtained based on the test car
geometry and camera setup position and orientation in the test car. The full
set of 11 points is then used for IRLS fitting of the ground plane in a world
coordinate system:

m:aX +bY +cZ+d=0, (8)

where (XY, Z) are pixel coordinates in the 3D world coordinate system con-
nected to the left camera. Here were assume that a? + b? + ¢? = 1 (otherwise
one can divide all coefficients by va? + b2 + ¢?) and b > 0. In this case vector
n = (a,b,c)” represents the normal unity vector of the ground plane and coef-
ficient d represents the distance from the camera to the ground plane. During
the disparity plane estimation, we use the estimation from the previous frame
for weight initialization in IRLS; for the first frame, for the same purpose, we
use the parameters of the canonic disparity plane. We assume that the ground
plane is estimated correctly if the following conditions are met:

In: — ngl| < 0 and ||n; — 01| < 64, (9)

where ny is normal vector for k —th frame, and ng is canonical normal vector.
Thresholds 8y = 0.075 and #; = 0.015 were chosen empirically. If the estimated
ground plane does not satisfy (9), the previous estimation is used.

5.3 LIDAR obstacles projection

Projection of the LIDAR-based obstacles into the (left) frame is based on the
ground plane position, the obstacle positions, the camera projective matrix
(from calibration data) and the position and orientation of the LIDAR sensor
with respect to the camera. Only the height of the obstacles is not available.
We have set the height of all the obstacles to a fixed value of 1.5 m. The result
of the LIDAR obstacles projection is shown in Fig. 12.
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ol
71’"3]]‘[32‘55@' ACCTrck dafe Road Curve
Objects, detected by o 1| (estimated by
ACC tracking system “ - ACC)
(projected onto the i
\ original frame) 7 ACC LIDAR
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Fig. 12. ACC obstacles projection. Left part contains the gray-scale version of
current frame, overlayed by the horizon line, the ground plane segment and projected
ACC (LIDAR) obstacles. Right part represents obstacles 2D range profile, provided
by ACC system.

6 Vision and LIDAR fusion

The fusion of the vision-based IMOs with LIDAR-based obstacles is based on
a simple matching process.

1. For the current IMO [, we look for candidates from the LIDAR obstacles
O; by means of the high intersection ratio:

= #(Ik N Oy /#(1x), (10)

where #(-) is number of pixels of the set in the brackets. If ratio rg >
0.5, then obstacle O; is an IMO I, candidate and considered for further
verification. If all obstacles were rejected, IMO I}, remains unupdated and
process continues from step 4.

2. All the obstacles Oy, with distances dy,, satisfying the following condi-

tion:
ldr,, — dil
d
where dj denotes the distance of the IMO I, are rejected. Like in the
previous step, if all obstacles were rejected, IMO I remains unupdated
and the process continues from step 4.
3. Among the remaining obstacles, we choose the best matching candidate
Oy, for the IMO I}, with minimal depth deviation |dk, — dj|. Distance, rel-
ative velocity and acceleration of IMO [}, are updated using corresponding

> 0.15, (11)
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values of the obstacle Og,. The absolute velocity of the IMO I}, is reesti-
mated in accordance with the new value of the relative speed. The obstacle
Oy, is eliminated from the search process. If all the obstacles were rejected,
IMO Ij remains unupdated.
4. The process finishes if all IMOs are checked, otherwise the next IMO is

selected for matching and the process continues from step 1.

Some results of the presented fusion are shown on Fig. 13.

Lefeindicator

-ojx

ACC Tkt

-lojx

ACC Tkt

frame: 5175

Lefeindicator

| S S
0 o 1w

0 o 1w

ACC Trckshta

Fig. 13. Fusion results. Red bars represent detected IMOs, whereas LIDAR obsta-

cles rejected by fusion procedure are shown as yellow bars.

7 Conclusions and future steps

A high level sensor fusion model for IMO detection, classification and track-
ing has been proposed. The model incorporates three independent sensors:
vision, LIDAR and speedometer. Vision plays the most important role in the
model, whereas LIDAR data are used for confirming the IMO detection and
for updating the IMO properties. The speedometer is used only for the IMOs
absolute speed in depth estimation.
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The existing model is still not a real-time system, but we see a number
of ways to increase its speed. Both visual streams of the model have feed-
forward architectures, which can be easily implemented in hardware such as
Field-Programmable Gate Arrays (FPGAs). Moreover, as far as the streams
are independent, they can be implemented as separate FPGAs, working in
parallel. In order to speed up the entire model, we propose to switch from
LeNet-based object recognition to faster and more task-specific recognition
paradigm (e.g. [36] or [23]). Another way to increase the speed of the model
could be the transition from an MLP-based fusion of the visual cues to a hard-
coded fusion of the visual cues with egomotion (e.g. [24]). As another future
step of the model development, we envisage the incorporation of KF-based
approaches [14, 35] for IMO tracking.
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Abstract. In the first part of this paper, we analyze the relation between local image
structures (i.e., homogeneous, edge-like, corner-like or texture-like structures) and the
underlying local 3D structure (represented in terms of continuous surfaces and different
kinds of 3D discontinuities) using range data with real-world color images. We find that
homogeneous image structures correspond to continuous surfaces, and discontinuities are
mainly formed by edge-like or corner-like structures, which we discuss regarding potential
computer vision applications and existing assumptions about the 3D world.

In the second part, we utilize the measurements developed in the first part to investigate
how the depth at homogeneous image structures is related to the depth of neighbor edges. For
this, we first extract the local 3D structure of regularly sampled points, and then, analyze the
coplanarity relation between these local 3D structures. We show that the likelihood to find a
certain depth at a homogeneous image patch depends on the distance between the image patch
and a neighbor edge. We find that this dependence is higher when there is a second neighbor
edge which is coplanar with the first neighbor edge. These results allow deriving statistically
based prediction models for depth interpolation on homogeneous image structures.

Submitted to:Network: Comput. Neural Syst.
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1. Introduction

Depth estimation relies on the extraction of 3D structure from 2D images which is realized by

a set of inverse problems including structure from motion, stereo vision, shape from shading,
linear perspective, texture gradients and occlusion [Bruce et al., 2003]. In methods which
make use of multiple views.€., stereo and structure from motion), correspondences between
different 2D views of the scene are required. In contrast, monocular or pictorial cues such
as shape from shading, texture gradients or linear perspective use statistical and geometrical
relations within one image to make statements about the underlying 3D structure.

Many surfaces have only weak texture or no texture at all, and as a consequence, the
correspondence problem is very hard or not at all resolvable for these surfaces. Nevertheless,
humans are able to reconstruct the 3D information for these surfaces, too. This gives rise
to the assumption that in the human visual system, an interpolation process is realised that,
starting with the local analysis of edges, corners and textures, computes depth also in areas
where correspondences cannot easily be found.

Processing of depth in the human visual system starts with the processing of local
image structures (such as edge-like structures, corner-like structures and textures) in V1
[Hubel and Wiesel, 1969, Gallant et al., 1994, Lee et al., 1998]. These structures (called 2D
structures in the rest of the paper) are utilized in stereo vision, depth from motion, depth from
texture gradients and other depth cues, which are localized in different parts of the brain,
starting from V1 and involving V2, V3, V4 and MT (see.g, [Sereno et al., 2002]).

There exists good evidence that depth cues which are not directly based on
correspondences evolve rather late in the development of the human visual system.
For example, pictorial depth cues are made use of only after approximately 6 months
[Kellman and Arterberry, 1998]. This indicates that experience may play an important role in
the development of these cues,, that we have to understand depth perception as a statistical
learning problem [Knill and Richards, 1996, Rao et al., 2002, Purves and Lotto, 2002]. A
step towards such an understanding is the investigation and use of the statistical relations
between the local 2D structures and the underlying 3D structure for each of these depth cues
[Knill and Richards, 1996, Rao et al., 2002, Purves and Lotto, 2002].

With the notion that the human visual system is adapted to the statistics of
the environment [Brunswik and Kamiya, 1953, Knill and Richards, 1996, Krueger, 1998,
Olshausen and Field, 1996, Rao et al., 2002, Purves and Lotto, 2002, Simoncelli, 2003] and
its successful applications to grouping, object recognition and stereo [Elder and Goldberg, 2002,
Elder et al., 2003, Pugeault et al., 2004, Zhu, 1999], the analysis and the usage of natural im-
age statistics have become an important focus of vision research. Moreover, with the advances
in technology, it has been also possible to analyze the 3D world using 3D range scanners
[Howe and Purves, 2004, Huang et al., 2000, Potetz and Lee, 2003, Yang and Purves, 2003].

In this paper, we analyze first-order and second-order relgtibaesveen 2D and 3D

1 In this paper, a relation is first-order if it involves two entities and an event between them. Analogously, a
relation is second-order if there are three entities and (at least) two events between them.
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structures extracted from chromatic 3D range glafar the first-order analysis, we investigate

the relation between local 2D structurég( homogeneous, edge-like, corner-like or texture-

like structures) and the underlying local 3D structure. As for the second-order analysis, we
investigate the relation between the depth at homogeneous 2D structures and the depth at the
bounding edges.

There have been only a few studies that have analyzed the 3D world from range data
[Howe and Purves, 2004, Huang et al., 2000, Potetz and Lee, 2003, Yang and Purves, 2003],
and these works have only been first-order. In [Yang and Purves, 2003], the distribution of
roughness, size, distance, 3D orientation, curvature and independent components of surfaces
was analyzed. Their major conclusions were: (1) local 3D patches tend to be saddle-like,
and (2) natural scene geometry is quite regular and less complex than luminance images.
In [Huang et al., 2000], the distribution of 3D points was analyzed using co-occurrence
statistics and 2D and 3D joint distributions of Haar filter reactions. They showed that
range images are much simpler to analyze than optical images and that a 3D scene is
composed of piecewise smooth regions. In [Potetz and Lee, 2003], the correlation between
light intensities of the image data and the corresponding range data as well as surface
convexity were investigated. They could justify the event that brighter objects are closer
to the viewer, which is used by shape from shading algorithms in estimating depth. In
[Howe and Purves, 2002, Howe and Purves, 2004], range image statistics were analyzed for
explanation of several visual illusions.

Our first-order analysis differs from these works. For 2D local image patches, existing
studies have only considered light intensity. As for 3D local patches, the most complex
considered representation has been the curvature of the local 3D patch. In this work, however,
we create a higher-order representation of the 2D local image patches and the 3D local
patches; we represent 2D local image patches using homogeneous, edge-like, corner-like or
texture-like structures, and 3D local patches using continuous surfaces and different kinds of
3D discontinuities. By this, we relate established local 2D structures to their underlying 3D
structures.

For the first-order analysis, we compute the conditional likelihB¢8D Structure 2D Structure,
by creating 2D and 3D representations of the local structure. Using this likelihood, we quan-
tify some assumptions made by the studies that reconstruct the 3D world from dense range
data. For example, we will show that the depth distribution varies significantly for different
visual features, and we will quantify already established inter-dependencies such as 'no news
is good news’ [Grimson, 1983]. This work also supports the understanding of how intrinsic
properties of 2D-3D relations can be used for the reconstruction of depth, for example, by
using statistical priors in the formalisation of depth cues.

For the second-order analysis, given two proximate co-planar edges, we compute
the ’likelihood field’ of finding co-planar surface patches which project as homogeneous
2D structures in the 2D image. This likelihood field is similar to the ’association
field’ [Field et al., 1993] which is a likelihood field also based on natural image statistics.

¢ In this paper, chromatic 3D range data means range data which has associated real-world color information.
The color information is acquired using a digital camera which is calibrated with the range scanner. 86
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The ’likelihood field” which we compute provides important information about (1) the
predictability of depth at homogeneous 2D structures using the depth available at the bounding
edges and (2) the relative complexity of 3D geometric structure compared to the complexity
of local 2D structures.

The paper is organized as follows: In sections 2 and 3, we define the types of local 2D
structures and local 3D structures and how we extract them for our analysis. In section 4, we
analyze the relation between the local 2D and 3D structures, and discuss the results. In section
5, we present our methods for analyzing the second-order relation between the homogeneous
2D structures and bounding edge structures, and discuss the results. Finally, we conclude the
paper in section 6 with a discussion.

2. Local 2D Structures

) el B

Texture-like
+ Homogeneous
0.8f -li § Corner-like

3 * Edge-like

[ -

[=)

Varianc

Orientation
e
<

Homogeneous 0.2} ©

4
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0 0.2 0.4 0.6

Contrast E

Figure 1. How a set of 54 patches map to the different areas of the intrinsic dimensionality
triangle. Some examples from these patches are also shown. The horizontal and vertical
axes of the triangle denote the contrast and the orientation variances of the image patches,

respectively.

We distinguish between the following local 2D structures (examples of each structure is
given in figure 1):

e Homogeneous 2D structures: Homogeneous 2D structures are signals of uniform
intensities, and they are not much made use of in the human visual system because retinal
ganglion cells give only weak sustained responses and adapt quickly at homogeneous
intensities [Bruce et al., 2003].

e Edge-like 2D structures: Edges are low-level structures which constitute the
boundaries between homogeneous or texture-like signals. Detection of edge-lik/
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structures in the human visual system starts with orientation sensitive cells in V1
[Hubel and Wiesel, 1969], and biological and machine vision systems depend on their
reliable extraction and utilization [Marr, 1982, Koenderink and Dorn, 1982].

e Corner-like 2D structures: Cornérgre image patches where two or more edge-like
structures with significantly different orientations intersect (feg, [Guzman, 1968,
Rubin, 2001] for their importance in vision). It has been suggested that the human
visual system makes use of them for different tasks like recovery of surface occlusion
[Guzman, 1968, Rubin, 2001] and shape interpretation [Malik, 1987].

e Texture-like 2D structures: Although there is not a widely-agreed definition, textures are
often defined as signals which consist of repetitive, random or directional structures (for
their analysis, extraction and importance in vision, sgg [Tuceryan and Jain, 1998]).

Our world consists of textures on many surfaces, and the fact that we can reliably

reconstruct the 3D structure from any textured environment indicates that human visual
system makes use of and is very good at the analysis and the utilization of textures.

In this paper, we define texture as 2D structures which have low spectral energy and a lot
of orientation variance (see figure 1 and section 2.1).

It is locally hard to distinguish between these ’ideal’ cases, and there are 2D structures
that carry mixed properties of these 'ideal’ cases. The classification of the features outlined
above is a discrete one. However, a discrete classification may cause problems as the inherent
properties of the "mixed” structures are lost in the discretization process. Instead, in this paper,
we make use of a continuous scheme which is based on the concept of intrinsic dimensionality
(see section 2.1 for more details).

2.1. Detection of Local 2D Structures

In image processing, intrinsic dimensionality (iD) was introduced by [Zetzsche and Barth, 1990]
and was used to formalizediscrete distinctiorbetween edge-like and junction-like struc-
tures. This corresponds to a classical interpretation of local 2D structures in computer vision.

Homogeneous, edge-like and junction-like structures are respectively classified by iD as
intrinsically zero dimensional (i0D)ntrinsically one dimensional (iLDandintrinsically two
dimensional (i2D)

When looking at the spectral representation of a local image patch (see figure 2(a,b)), we
see that the energy of an i0OD signal is concentrated in the origin (figure 2(b)-top), the energy
of an i1D signal is concentrated along a line (figure 2(b)-middle) while the energy of an i2D
signal varies in more than one dimension (figure 2(b)-bottom).

It has been shown in [Felsberg andiger, 2003, Kiiger and Felsberg, 2003] that the
structure of the ID can be understood as a triangle that is spanned by two measures: origin
variance {.e., contrast) and line variance. Origin variance describes the deviation of the energy
from a concentration at the origin while line variance describes the deviation from a line
structure (see figure 2(b) and 2(c)); in other words, origin variance measures non-homogeneity

| In this paper, for the sake of simplicity, junctions are called corners, too.
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Figure 2. lllustration of iD (Sub-figures (a,b) taken from [Felsberg andder, 2003]). (a)

Three image patches for three different intrinsic dimensidibd.The 2D spatial frequency
spectra of the local patches in (a), from top to bottom: iOD, i1D, igf).The topology of

iD. Origin variance is variance from a point, i.e., the origin. Line variance is variance from

a line, measuring the junction-ness of the signg{¢ for N = 0, 1, 2 stands for confidence

for being i0OD, i1D and i2D, respectively. Confidences for an arbitrary point P is shown in the
figure which reflect the areas of the sub-triangles defined by P and the corners of the triangle.
(d) The decision areas for local 2D structures.

of the signal whereas the line variance measures the junctionness. The corners of the triangle
then correspond to the ’ideal’ cases of iD. The surface of the triangle corresponds to signals

that carry aspects of the three ’ideal’ cases, and the distance from the corners of the triangle
indicates the similarity (or dissimilarity) tioleal iOD, i1D and i2D signals.

The triangular structure of the intrinsic dimension is counter-intuitive, in the first place,
since it realizes a two-dimensional topology in contrast to a linear one-dimensional structure
that is expressed in the discrete counting 0, 1 and 2. As shown igfrand Felsberg, 2003,
Felsberg and Kiger, 2003], this triangular interpretation allows farantinuous formulation
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Figure 3. Computed iD for the image in figure 2, black means zero and white means one.
From left to right:ciop, ci1p, ciop and highest confidence marked in gray, white and black for
iOD, i1D and i2D, respectively.

of iD in terms of 3 confidences assigned to each discrete case. This is achieved by first
computing two measurements of origin and line variance which define a point in the triangle
(see figure 2(c)). The bary-centric coordinates (see, e.g., [Coxeter, 1969]) of this point in the
triangle directly lead to a definition of three confidences that add up to one:

ciop =1—x,¢cp =2 —Y,Cap =Y. (1)

These three confidences reflect the volume of the areas of the three sub-triangles which are
defined by the point in the triangle and the corners of the triangle (see figure 2(c)). For
example, for an arbitrary poinP in the triangle, the area of the sub-triangle i@BELD
denotes the confidence for i2D as shown in figure 2(c). That leads to the decision areas
for i0D, i1D and i2D as seen in figure 2(d). See appendix [Felsberg aingekr2003,
Kriiger and Felsberg, 2003] for more details.

For the example image in figure 2, computed iD is given in figure 3.

Figure 1 shows how a set of example local 2D structures map on to it. In figure 1, we
see that different visual structures map to different areas in the triangle. A detailed analysis
of how 2D structures are distributed over the intrinsic dimensionality triangle and how some
visual information depends on this distribution can be found in [Kalkan et al., 2005].

3. Local 3D Structures

To our knowledge, there does not exist a systematic and agreed classification of local 3D
structures like there is for 2D local structures( homogeneous structures, edges, corners and
textures). Intuitively, the 3D world consists of continuous surface patches and different kinds
of 3D discontinuities. During the imaging process (through the lenses of the camera or the
eye), 2D local structures are generated by these 3D structures together with the illumination
and the reflectivity of the environment.

With this intuition, any 3D scene can be decomposed geometrically into surfaces and 3D
discontinuities. In this context, the local 3D structure of a point can be a:

e Surface Continuity: The underlying 3D structure can be described by one surface whose
normal does not change or changes smoothly (see figure 4(a)). 90
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Figure 4. lllustration of the types of 3D discontinuitiega) 2D image. (b) Continuity. (c)
Orientation discontinuity(d) Gap discontinuity.(e) Irregular gap discontinuity(f)-(j) The
range images corresponding to (a)-(e). Note that the range images are scaled independently

for better visibility.

91
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Figure 5. 10 of the 20 3D data sets used in the analysis. The points without range information
are marked in blue. The gray image shows the range data of the top-left scene. The horizontal
and the vertical resolutions of the scenes respectively have the following ranges: [512-2048]
and [390-2290]. The average resolution of the scenes is 1140x1001.

e Regular Gap discontinuity: Regular gap discontinuities are occlusion boundaries, whose
underlying 3D structure can be described by a small set of surfaces with a significant
depth difference. The 2D and 3D views of an example gap discontinuity are shown in
figure 4(d).

e Irregular Gap discontinuity: The underlying 3D structure shows high depth-variation
that can not be described by two or three surfaces. An example of an irregular gap
discontinuity is shown in figure 4(e).

e Orientation Discontinuity: The underlying 3D structure can be described by two surfaces
with significantly different 3D orientations that meet at the center of the patch. This type
of discontinuity is produced by a change in 3D orientation rather than a gap between
surfaces. An example for this type of discontinuity is shown in figure 4(c).

One interesting example is 3D corners of, for example, a cube. 3D corners would be
classified as regular gap discontinuities or orientation discontinuities, depending on the view.
If the image patch includes parts of the background objects, then there is a gap discontinuity,
and the 3D corner would be classified as a gap discontinuity. If, however, the camera centers
the corner so that all the adjacent edges of the cube are visible and no parts of other objects
are visible, then the 3D corner would be an orientation discontinuity.

3.1. Detection of Local 3D Structures

In this subsection, we define our measures for the three kinds of discontinuities that we
described above; namely, gap discontinuity, irregular gap discontinuity and orientation
discontinuity. The measures for gap discontinuity, irregular gap discontinuity and orientatiog,
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discontinuity of a patchP will be denoted byicp(P), piep(P) anduop(P), respectively.
The reader who is not interested in the technical details can jump directly to section 4.

3D discontinuities are detected in studies which involve range data processing, using
different methods and under different names like two-dimensional discontinuous edge,
jump edge or depth discontinuity for gap discontinuity; and, two-dimensional corner edge,
crease edge or surface discontinuity for orientation discontinuity [Bolle and Vemuri, 1991,
Hoover et al., 1996, Shirai, 1987].

In our analysis, we used chromatic range data of outdoor scenes which were obtained
from Riegl UK Ltd. (http://www.riegl.co.uk/ ). There were 20 scenes in total, 10
of which are shown in figure 5. The range of an object which does not reflect the laser beam
back to the scanner or is out of the range of the scanner cannot be measured. These points
are marked with blue in figure 5 and are not processed in our analysis. The horizontal and
the vertical resolutions of the scenes respectively have the following ranges: [512-2048] and
[390-2290]. The average resolution of the scenes is 1140x1001.

3.1.1. Measure for Gap Discontinuityisp

Gap discontinuities can be measured or detected in a similar way than edges in 2D images;
edge detection processes RGB-coded 2D images while for a gap discontinuity, one needs to
process XYZ-coded 2D imagdé In other words, gap discontinuities can be measured or
detected by taking the second order derivative of XYZ values [Shirai, 1987].

Measurement of a gap discontinuity is expected to operate on both the horizontal and the
vertical axes of the 2D image; that is, it should be a two dimensional function. The alternative
is to discard the topology and do an 'edge-detection’ in sorted XYZ valiesto operate
as a one-dimensional function. Although we are not aware of a systematic comparison of
the alternatives, for our analysis and for our data, the topology-discarding gap discontinuity
measurement captured the underlying 3D structure better (of course, qualitateelgy
visual inspection). Therefore, we have adopted the topology-discarding gap discontinuity
measurement in the rest of the paper.

For an image patcl® of size N x N, let,

X = ascendingsort{{X; | i € P}),
Y = ascendingsort({Y; | i € P}), 2)
Z = ascendingsort{Z; | i € P}),

and also, for = 1,.., (N x N — 2),

={ | (X2 = Xig1) — (Xis = ) | 1,
={| itz = Vit1) = Vir1 = Vi) | }, (3)
B={1(Zh2—Zi) = (Zin - Z) | },
whereX;, );, Z; represents 3D coordinates of pixelEquation 3 takes the absolute value of
the[+1, —2, +1] operator.

€ Note that XYZ and RGB coordinate systems are not the same. However, detection of gap discontinuity in
XYZ coordinates can be assumed to be a special case of edge detection in RGB coordinates. 93
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Figure 6. Example histograms and the number of clusters that the fungt{éh computes.

(S) finds one cluster in the left histogram and two clusters in the right histogram. Red
line marks the threshold value of the function. X axis denotes the values for 3D orientation
differences.

The setsX¥,)> and Z2 are the measurements of the jump®.( second order
differentials) in the setd’, Y and Z, respectively. A gap discontinuity can be defined simply
as a measure of these jumps in these sets. In other words:

h(X2) + h(Y2) + h(Z4
pp(p) = ML ENITTIED) @
where the functiorh : S — [0, 1] over the setS measures the homogeneity of its argument
set (in terms of its 'peakiness’) and is defined as follows:

1

)= 55 * K sy

where#(S) is the number of the elements &f ands; is thei™* element of the sef. Note

that as a homogeneous set( a non-gap discontinuity§ produces a high(S) value, a gap
discontinuity causes a lowp value. Figure 8(c) shows the performanceugf, on one of
our scenes shown in figure 5.

It is known that derivatives like in equations 2 and 3 are sensitive to noise. Gaussian-
based functions could be employed instead. In this paper, we chose simple derivatives for
their faster computation times, and instead employed a more robust processing.stage (
analyzing the uniformity of the distribution of derivatives) to make the measurement more
robust to noise. As shown in figure 8(c), this method can capture the underlying 3D structure
well.

(5)

3.1.2. Measure for Orientation Discontinuityop

The orientation discontinuity of a patdh can be detected or measured by taking the 3D
orientation difference between the surfaces that meet.inlf the size of the patchP is
small enough, the surfaces can be, in practice, approximated by 2-pixel wide unit'planes

* Note that using bigger planes have the disadvantage of losing accuracy in positioning which is very crucial
for the current analysis.
94
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The histogram of the 3D orientation differences between every pair of unit planes forms one
cluster for continuous surfaces and two clusters for orientation discontinuities.

For an image patcl® of size N x N pixels, the orientation discontinuity measure is
defined as:

pop(P) = v(H"({a(i, j) | i,j € planes(P),i # j})), (6)
whereH"(S) is a function which computes thebin histogram of its argument s&t ¢/(S)
is a function which finds the number of clustersSnplanes(P) is a function which fits 2-
pixel-wide unit planes to 1-pixel apart pointsihusing Singular Value Decompositiénand,
a(i, j) is the angle between plangand;.

For a histogrant{ of size Ny, the number of clusters is given by:
SNV neq([H; > max(H)/10], [H;—, > max(H)/10))
¥(S) = 5 : (7)
where the functiomeq returnsl1 if its parameters are not equal and retubnotherwise;

H; represents thé" element of the histogranfi; H, and Hy,, ,, are defined as zero; and,
max(H)/10 is an empirically set threshold. Figure 6 shows two example clusters for a
continuous surface and an orientation discontinuity.

Figure 8(d) shows the performance;qf, on one of our scenes shown in figure 5.

3.1.3. Measure for Irregular Gap Discontinuity:;gp
Irregular gap discontinuity of a patch can be measured using the observation that an

irregular-gap discontinuous patch in a real image usually consists of small surface fragments
with different 3D orientations. Therefore, the spread of the 3D orientation histogram of a
patch P can measure the irregular gap discontinuity.of

Similar to the measure for orientation discontinuity defined in sections 3.1.1 and 3.1.2,
the histogram of the differences between the 3D orientations of the unit planes (which are of
2 pixels wide) is analyzed. For an image patelof size N x N pixels, the irregular gap
discontinuity measure is defined as:

piep(P) = h(H"({a(i,7) | @7 € planes(P),i # j})), (8)

whereplanes(P), a(i, j), H"(S) andh(S) are as defined in section 3.1.2. Figure 8(e) shows
the performance qf;;p on one of our scenes shown in figure 5.

3.1.4. Combining the Measures

The relation between the measurements and the types of the 3D discontinuities are outlined
in table 1 which entails that an image pai€hs:

e gap discontinuous if¢,(P) < 7, aNdu;¢p(P) < Ty,

e irregular-gap discontinuous ., (p) < 7, andu,;ap(P) > Ty,

e orientation discontinuous j;»(P) > 7, anduop > 1,

* Singular Value Decomposition is a standard technique for fitting planes to a set of points. It finds the perfectly
fitting plane if it exists; otherwise, it returns the least-squares solution. 95
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Figure 7. Results of the combined measures on artificial data. The camera and the range
scanner are denoted by c. (a) Gap discontinuity tests. There are two planes which are separated
by a distance d where=d 0,0.01,0.02,0.03,0.04 meters. (b) The detected discontinuities.

Dark blue marks the boundary points where the measures are not applicable. Blue and
orange respectively correspond to detected continuities and gap discontinuities. (c) Orientation
discontinuity tests. There are two planes which are connected but separated with an angle a
where a380,171,153,117,90 degrees. (d) The detected discontinuities. Dark blue marks

the boundary points where the measures are not applicable. Blue and green respectively
correspond to detected continuities and orientation discontinuities.

<)

e continuous ifucp(P) > 7, anduop(P) < 1.

For our analysis)V, whereNx N is the size of the patches is set to 10 pixels. Bigger values
for N means larger support region for the measures, in which case different kinds of 3D
discontinuities might interfere in the patch. On the other hand, using smaller values would
make the measures very sensitive to noise. Other threslipldsd;, are respectively set

to 0.4 and0.6. These values are empirically determined by testing the measures over a large
set of samples. Different values for these thresholds may result in wrong classifications of
local 3D structures and may lead to different results than presented in this paper. Similarly,
the number of binsy, in H™ is empirically determined as 20.

Figure 7 shows the performance of the measures on two artificial scenes, one for gap
discontinuity and one for orientation discontinuity for a set of depth and angle differences
between planes. In the figure, the detected discontinuity type is shown for each pixel. We see
that gap discontinuity can be detected reliable even if the gap difference is low. The sensitivi&g5
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a

Figure 8. The 3D and 2D information for one of the scenes shown in figure 5. Dark
blue marks the points without range dafa) 3D discontinuity. Blue: continuous surfaces,
light blue: orientation discontinuities, orange: gap discontinuities and brown: irregular gap
discontinuities. (b) Intrinsic Dimensionality. Homogeneous patches, edge-like and corner-
like structures are encoded in colors brown, yellow and light blue, respectiyelyGap
discontinuity measurep. (d) Orientation discontinuity measuresp. (e) Irregular gap
discontinuity measurgrgp.

Dis. Type HaD HIGD HoD
Continuity High value| Don't care 1

Gap Dis. Low value | Low value | Don’t care
Irregular Gap Dis.| Low value | High value| Don’t care
Orientation Dis. | High value| Don't care > 1

Table 1. The relation between the measurements and the types of the 3D discontinuities.

of the orientation discontinuity measure is around 160 degrees. However, the sensitivity of
the measures would be different in real scenes due to the noise in the range data.

For a real example scene from figure 5, the detected discontinuities are shown in figure
8(a). We see that the underlying 3D structure of the scene is reflected in figure 8(a).

Note that this categorical combination of the measures appears to be against the
motivation that has been provided for the classification of local 2D structures where we had
advocated a continuous approach. There are two reasons: (1) With continuous 3D measures,
the dimensionality of the results would be four (origin variance, line variance, a 3D measure
and the normalized frequency of the signals), which is difficult to visualize and analyse. 1g7
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fact, the number of triangles that had to be shown in figure 9 would be 12, and it would be
very difficult to interpret all the triangles together. (2) It has been argued by several studies
[Huang et al., 2000, Yang and Purves, 2003] that range images are much simpler and less
complex to analyze than 2D images. This suggests that it might be safer to have a categorical
classification for range images.

4. First-order Statistics: Analysis of the Relation Between Local 3D and 2D Structure

In this section, we analyze the relation between local 2D structures and local 3D structure;
namely, the likelihood of observing a 3D structure given the corresponding 2D struogyre (
P(3D Structurd 2D Structurg).

4.1. Results and Discussion

For each pixel of the scene (except where range data is not available), we computed the 3D
discontinuity type and the intrinsic dimensionality. Figures 8(a) and (b) show the images
where the 3D discontinuity and the intrinsic dimensionality of each pixel are marked with
different colors.

Having the 3D discontinuity type and the information about the local 2D structure of
each point, we wanted to analyze what the likely underlying 3D structure is for a given
local 2D structure; that is, the conditional likelihod®{ 3D Discontinuity | 2D Structure.

Using the available 3D discontinuity type and the information about the local 2D structure,
other measurements or correlations between the range data and the image data could also be
computed in a further study.

P(3D Discontinuity| 2D Structure is shown in figure 9. Note that the four triangles in
figures 9(a), 9(b), 9(c) and 9(d) add up to one for all points of the triangle.

In figure 10, maximum likelihood estimates (MLE) of local 3D structures given local 2D
structures are provided. Figure 10(a) shows the MLE from the distributions in figure 9. Due
to high likelihoods, gap discontinuities and continuities are the most likely estimates given
local 2D structures. Figure 10(b) shows the MLE from tloemalizeddistributions:i.e., each
triangle in figure 9 is normalized within itself so that its maximum likelihood is 1. This way
we can see the mostly likelgcal 2D structuredor different local 3D structures.

e Figure 9(a) shows that homogeneous 2D structures are very likely to be formed by 3D
continuities as the likelihoof(Continuity| 2D Structure is very high (bigger than 0.85)
for the area where homogeneous 2D structures exist (marked with H in figure 9(a)). This
observation is confirmed in the MLE estimates of figure 10.
Many surface reconstruction studies make use of a basic assumption that there is a
smooth surface between any two points in the 3D world, if there is no contrast difference
between these points in the image. This assumption has been first called as 'no news is
good news’ in [Grimson, 1983]. Figure 9(a) quantifies 'no news is good news’ and shows
for which structures and to what extent it holds: In addition to the fact that no news is
in fact good news, figure 9(a) shows that news, especially texture-like structures angg
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Figure 9. P(3D Discontinuity | 2D Structure. The schematic insets indi-
cate the locations of the different types of 2D structures inside the triangle for
easy reference (the letters C, E, H, T represent corner-like, edge-like, homo-
geneous and texture-like structures). (a) P(Continuity | 2D Structure. (b)
P(Gap Discontinuityl 2D Structurg. (c) P(Irregular Gap Discontinuity 2D Structurg. (d)
P(Orientation Discontinuity 2D Structurg.

edge-like structures, can also be good news (see below). Homogeneous 2D structures
cannot be used for depth extraction by correspondence-based methods, and only weak
or no information from these structures is processed by the cortex. Unfortunately, the
vast majority of local image structure is of this type (seg, [Kalkan et al., 2005]).

On the other hand, homogeneous structures indicate 'no change’ in depth which is the
underlying assumption of interpolation algorithms.

e Edges are considered as important sources of information for object recognition and
reliable correspondence finding. Approximately 10% of local 2D structures are of that
type (seeg.g, [Kalkan et al., 2005]). Figures 9(a), (b) and (d) together with the MLE
estimates in figure 10 show that most of the edges are very likely to be formed b99
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(€Y (b)

Figure 10. Maximum likelihood estimates of local 3D structures given local 2D structures.
Numbers 1, 2, 3 and 4 represent continuity, gap discontinuity, orientation discontinuity and
irregular gap discontinuity, respectivelya) Raw maximum likelihood estimates. Note that
the estimates are dominated by continuities and gap discontinuttlieslaximum likelihood
estimates from normalized likelihood distributions: the triangles provided in figure 9 are
normalized within themselves so that the maximum likelihoo 0fX | 2D Structure is 1 for

X being continuity, gap discontinuity, irregular gap discontinuity and orientation discontinuity.

continuous surfaces or gap discontinuities. Looking at the decision areas for different
local 2D structures shown in figure 2(d), we see that the edges formed by continuous
surfaces are mostly low-contrast edges (figure 9{a);the origin variance is close to

0.5. Little percentage of the edges are formed by orientation discontinuities (figure 9(d)).

e Figures 9(a) and (b) show that well-defined corner-like structures are formed by either
gap discontinuities or continuities.

e Figures 9(d) and 10 show that textures also are very likely to be formed by surface

continuities and irregular gap discontinuities.

Finding correspondences becomes more difficult with the lack or repetitiveness of

the local structure. The estimates of the correspondences at texture-like structures

are naturally less reliable. In this sense, the likelihood that certain textures are

formed by continuous surfaces (shown in figure 9(a)) can be used to model stereo

matching functions that include interpolation as well as information about possible

correspondences based on the local image information.

It is remarkable that local 2D structures mapping to different sub-regions in the triangle
are formed by rather different 3D structures. This clearly indicates that these different 2D
structures should be used in different ways for surface reconstruction.

100
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>

(@) (b) (c)

Figure 11. lllustration of the relation between the depth of homogeneous 2D structures and
the bounding edgega) In the case of the cube, the depth of homogeneous image area and
the bounding edges are related. However, in the case of round surfareke depth of
homogeneous 2D structures may not be related to the depth of the bounding(eligethe

case of a cylinder, we see both cases of the relation as illustrated in (a) and (b).

5. Second-Order Statistics: Analysis of Co-planarity between 3D Edges and
Continuous Patches

As already mentioned in section 1, it is not possible to extract depth at homogeneous 2D
structures (in the rest of the paper, a homogeneous 2D structure that corresponds to a 3D
continuity will be called among using methods that make use of multiple views for 3D
reconstruction. In this section, by making use of the ground truth range data, we investigate
co-planarity relations between the depth at homogeneous 2D structures and the edges that
bound them. This relation is illustrated for a few examples in figure 11.

For the analysis, we used the chromatic range data set that we also used for the first-order
analysis in section 4. Samples from the dataset are displayed in figure 5.

In the following subsection, we explain how we analyze the relation. The results are
presented and discussed in section 5.2.

5.1. Methods

This subsection provides the procedural details of how the analysis is performed.

The analysis is performed in three stages: First, local 2D and 3D representations of the
scene are extracted from the chromatic range data. Second, a data set is constructed out of
each pair of edge features, associating the monos that are likely to be coplanar to those edges
to them (see section 5.1.2 for what we mean by relevance). Third, the coplanarity between the
monos and the edge features that they are associated to are investigated. An overview of the
analysis process is sketched in figure 12, which roughly lists the steps involved.

5.1.1. Representation

Using the 2D image and the associated 3D range data, a representation of the scene is
created in terms of local compository 2D and 3D features denoted. bin this process,
first, 2D features are extracted from the image information, and at the locations of these 212
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Representation

Local 2D Data Collection
Representation
Go over every
proximate pair of .
Y edge features Analysis
Local 3D Investigate the coplanarity
i - —— | relations between pairs of
Representation
edges and the monos
A
Associate the
"interesting" monos
3D to each pair
Discontinuity

Figure 12. Overview of the analysis process. First, local 2D and 3D representations of the
scene are extracted from the chromatic range data. Second, a data set is constructed out of each
pair of edge features, associating the monos that are likely to be copilandir{teresting”)

to them (see section 5.1.2 for what we mean by relevance). Third, the coplanarity between the
monos and the edge features that they are associated to are investigated.

features, 3D features are computed. The complementary information from the 2D and 3D
features are then merged at each valid position, where validity is only defined by having
enough range data to extract a 3D representation.

For homogeneous and edge-like structures, different representations are needed due to
different underlying structures. For this reason, we have two different definitiondefoted
respectively byr¢ (for edge-like structures) and” (for monos) and formulated as:

™" = (X3p, X2p, ¢ P), 9)
T = <X3D7 X‘2D7 ¢2D7 C1,C2, P1, p2)7 (10)

whereXgp andX,p denote 3D and 2D positions of the 3D entityip is the 2D orientation

of the 3D entity;c; andc, are the 2D color representation of the surfaces of the 3D entity;
represents the color of; p; andp, are the planes that represent the surfaces that meet at
the 3D entity; andg represents the plane of* (see figure 13). Note that™ does not have

any 2D orientation information (because it is undefined for homogeneous structures), and
has two color and plane representations to the ’left’ and 'right’ of the edge.

The process of creating the representation of a scene is illustrated in figure 13.

In our analysis, the entities are regularly sampled from the 2D information. The sampling
size is 10 pixels. See [Kiger et al., 2003, Krger and Vidrgotter, 2005] for details.

Extraction of the planar representation requires knowledge about the type of local 3D
structure of the 3D entity (see figure 13). Namely, if the 3D entity is a continuous surface,
then only one plane needs to be extracted,; if the 3D entity is an orientation discontinuity, then
there will be two planes for extraction; if the 3D entity is a gap discontinuity, then there will
also be two planes for extraction.

In the case of a continuous surface, a single plane is fitted to the set of 3D points in
the 3D entity in question. For orientation discontinuous 3D structures, extraction of th@2
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‘ Range image “» ‘ Discont. image‘

Local 2D Representation Local 3D Representation
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™ = (X3p,Xop, ¢, P)
° = (X3p. Xop, #2D €1, €2, P1, P2)

Figure 13. lllustration of the representation of a 3D entity. From the 2D and 3D information,
local 2D and 3D representation is extracted.

planar representation is not straight-forward. For these structures, our approach was to fit
unit-planes to the 3D points of the 3D entity and find the two clusters in these planes using
k-means clustering of the 3D orientations of the small planes. Then, one plane is fitted for
each of the two clusters, producing the bi-fold planar representation of the 3D entity.

Color representation is extracted in a similar way. If the image patch is a homogeneous
structure, then the average color of the pixels in the patch is taken to be the color
representation. If the image patch is edge-like, then it has two colors separated by the line
which goes through the center of the image patch and which has the 2D orientation of the
image patch. In this case, the averages of the colors of the different sides of the edge define
the color representation in terms @f andc,. If the image patch is corner-like, the color
representation becomes undefined.

5.1.2. Collecting the Data Set

In our analysis, we form pairs out af's that are close enough (see below), and for each
pair, we check whether monos in the scene are coplanar to the elements of the pair or not.
As there are plenty of monos in the scene, we only consider a subset of monos for each pair
of 7¢ that we suspect to be relevant to the analysis because otherwise, the analysis becomes
computationally intractable. The situation is illustrated in figure 14(a). In this figurertwo
and three regions are shown; however, only one of these regiensdgion A) is likely to

~ By unit-planes, we mean planes that are fitted to the 3D points that are 1-pixel apart in the 2D image. 103
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Figure 14. (a)Given a pair of edge features, coplanarity relation can be investigated for
homogeneous image patches inside regions A, B and C. However, due to computational
intractability reasons, this paper is concerned in making the analysis only in region A (see
the text for more details)(b)-(d) A few different configurations of edge features that might

be encountered in the analysis. The difficult part of the investigation is to make these different
configurations comparable, which can be achieved by fitting a shape (like square, rectangle,
circle, parallelogram, ellipse) to these configuratiofes). The ellipse, among the alternative
shapes i(e., square, rectangle, circle, parallellogram) turns out to describe the different
configurations shown in (b)-(d) better. For this reason, ellipse is for analyzing coplanarity
relations in the rest of the paper. See the text for details on how the parameters of the ellipse
are set.

r monog.Q, see figure 11(a)). Thigssumptions based on the observation of

how objects are formed in the real world: objects have boundaries which consists of edge-like

structures wh

0 bound surfaces, or image areas, of the object. The image area that is bounded

by a pair of edge-like structures is likely to be the area that has the normals of both structures.
For convex surfaces of the objects, the area that is bounded belongs to the object; however, in
the case of concave surfaces, the area covered may also be from other objects, and the extent

of the effect o

f this is part of the analysis.

Let P denote the set of pairs of proximatés whose normals interse@. can be defined
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as:
P = {(xf,75) | Vrf, 75, 7 € Q(x5), I(L (w5), L (75))}, (11)

where((7¢) is the N-pixel-2D-neighborhood af*?; L (7¢) is the 2D line orthogonal to the
2D orientation ofr*, i.e., the normal ofr¢; and,/(l;, l3) is true if the lined; andl, intersect.
We have taken N to be 100.

It turns out that there are a lot of different configurations possible for a pair of edge
features based on relative position and orientation, which are illustrated for a few cases in
figure 14(b)-(d). The difficult part of the investigation is to be able to compare these different
configurations. One way to achieve this is to fit a shape to region A whichaanalizethe
coplanarity relations by its size in order to make them comparable (see section 5.2 for more
information).

The possible shapes would be square, rectangle, parallelogram, circle and ellipse.
Among the alternatives, it turns out that an ellipse (1) is computationally cheap and (2) fits to
different configurations of; andr, under different orientations and distaneathoutleaving
region A much. Figure 14(e) demonstrates the ellipse generated by an example pair of edges
in figure 14(a). The center of the ellipse is at the intersection of the normals of the edges,
which we callthe intersection poinfiP) in the rest of the paper.

The parameters of an ellipse are composed of two focus pfinfs and the minor axis
b. In our analysis, the more distant 3D edge determines the foci of the ellipse (and, hence,
the major axis), and the other 3D edge determines the length of the minor axis. Alternatively,
the ellipse can be constructed by minimizing an energy functional which optimizes the area
of the ellipse inside region A and going through the featusesndr,. However, for the sake
of speed issues, the ellipse is constructed without optimization.

See appendix A.1 for details on how we determine the parameters of the ellipse.

For each pair of edges if?, the region to analyze coplanarity is determined by
intersecting the normals of the edges. Then, the monos inside the ellipse are associated to
the pair of edges.

Note that ar® has two planes that represent the underlying 3D structure. \When
become associated to monos, only one plane, the one that points into the ellipse, remains
relevant. Letr*® denote the semi-representationméfwhich can be defined as:

T = (X3D7 X2D7 c, p) (12)

Note thatr*¢ is equivalent to the definition of* in equation 10.
Let 7 denote the data set which stor®sand the associated monos which can be
formulated as:

T ={(m"m"m™) | (w1, 75) € P,a™ e 8™ 7™ € E(nf, m3)}, (13)

whereS™ is the set of allr™.
A pair of 7¢s and the set of monos associated to them are illustrated in figure 15. The
figure shows the edges and the monos (together with ellipse) in 2D and 3D.

° In other words, the Euclidean image distance between the structures should be less than N. 105
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() (d)

Figure 15. lllustration of a pair ofr® and the set of monos associated to théa).The input

scene. A pair of edges (marked in blue) and the associated monos (marked in green) with an
ellipse (drawn in black) around them shown on the input image. See (c) for a zoomed version.
(b) The 3D representation of the scene in our 3D visualization software. This representation
is created from the range data corresponding to (a) and is explained in théc)ekhe part

of the input image from (a) where the edges, the monos and the ellipse are better {iible.

A part of the 3D representation (from (b)) corresponding to the pair of edges and the monos
in (c) is displayed in detail where the edges are shown with blue margins; the monos with the
edges are shown in green (all monos are coplanar with the edges). The 3D entities are drawn
in rectangles because of the high computational complexity for drawing circles.

5.1.3. Definition of coplanarity
Two entities are coplanar if they are on the same plane. Coplanarity of edge features and
monos is equivalent to coplanarity of two planar patches: two planar patclaesl B are
coplanar if (1) they are parallel and (2) the planar distance between them is zero.
See appendix A.2 for more information.

5.2. Results and Discussions

The data sef defined in equation 13 consists of pairsagf 75 and the associated monos.
Using this set, we compute the likelihood that a mono is coplanar§ahd/orrS against a
distance measure.

The results of our analysis are shown in figures 16 and 18 and 19.

In figure 16(b), the likelihood of the coplanarity of a mono against the distance do

75 is shown. This likelihood can be denoted formallyagop(n™, 7§ & 75) | dy (7™, 7¢)) 106
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Figure 16. Likelihood distribution of coplanarity of monos. In each sub-figure, left-plot
shows the likelihood distribution whereas right-plot shows the frequency distribution. (a) The
likelihood of the coplanarity of a mono with{ or 75 against the distance tef or 5. This is

the unconstrained cadeg., the case where there is no information about the coplanarity of
andrs. (b) The likelihood of the coplanarity of a mono wittj and 7§ against the distance to

w{ or ms.

P(cop(rt™, 1) | (1™, 1) P(cop(rt", €& ) | d(rT", TF)

% 0.25 0.5 0.75 1 % 0.25 0.5 0.75 1
d, (0", ) 4, (", )
(@) (b)

Figure 17. Likelihoods from figures 16(a) and 16(b) with a mateict coplanarity relation
(namely, we set the threshold$ andTy to 10 degrees and 0.2, respectively. See Appendix
for more information about these threshold€) Figure 16(a) with more strict coplanarity
relation. (b) Figure 16(b) with more strict coplanarity relation.

wherecop(n™, 7§ & 7§) is defined agop(7§, 75) A cop(n™, 7€), andx® is eitherr$ or .
107
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Figure 18. The likelihood of the coplanarity of a mono against the distanceRtoLeft-plot
shows the likelihood distribution whereas right-plot shows the frequency distribution.
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Figure 19. The likelihood of the coplanarity of a mono against the distaneg @nd~$. Left-
plot shows the likelihood distribution whereas right-plot shows the frequency distribution.

The normalized distance meastidg; (7™, 7€) is defined as:
B d(n™, )

2\/d(r$, IP)? + d(r, I P)?
wherer® is eithern{ or 75, andI P is the intersection point of{ and~=5. We see in figure
16(b) that the likelihood decreases when a mono is more distant from an edge. However,
when the distance measure gets closer to one, the likelihood increases again. This is because,
when a mono gets away from eithef or 7§, it gets closer to the other.

In figure 16(a), we see the unconstrained case of figure 16é);the case where

there is no information about the coplanarity of and 75; namely, the likelihood
P(cop(n™,m¢) | dy (7™, w¢)) wherer® is eithern¢ or 5. The comparison with figure 16(b)
shows that the existence of another edge in the neighborhood increases the likelihood of

finding coplanar structures. As there is no other coplanar edge in the neighborhood, the
likelihood does not increase when the distance is close to one (compare with figure 16(b)).

dy(m™, 7¢) (14)

# In the following plots, the distance means the Euclidean distance in the image domain.
108
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It is intuitive to expect symmetries in figure 16. However, as (1) the roles @nd~s$
in the ellipse are fixed, and (2) oné is guaranteed to be on the major axis, and the ather
may or may not be on the minor axis, the symmetry is not observable in figure 16.

To see the effect of the coplanarity relation on the results, we reproduced figures 16(a)
and 16(b) with a morstrict coplanarity relation (namely, we set the threshdlgsnd T to
10 degrees and 0.2, respectively. See Appendix for more information about these thresholds).
The results with more constrained coplanarity relation are shown in figure 17. Although the
likelihood changes quantitatively, the figure shows the qualitative behaviours that have been
observed with the standard thresholds. Moreover, we cross-checked the results for subsets of
the original dataset (results not provided here) and confirmed the same qualitative results.

In figure 18, the likelihood of the coplanarity of a mono against the distan£@ t.e.,
P(cop(m™,n{ & 75) | dn (7™, I P))) is shown. We see in the figure that the likelihood shows
a flat distribution against the distance to IP.

In figure 19, the likelihood of the coplanarity of a mono against the distancgdad 7§
(i.e,, P(cop(m™, w¢ & m§) | dn(m™, w$), dn (7™, w5))) is shown. We see that whert is close
to 7§ or x5, it is more likely to be coplanar with§ and=$ than when it is equidistant to both
edges. The reason is that, whefh moves away from an equidistant point, it becomes closer
to the other edge, in which case the likelihood increases as shown in figure 16(b).

The results, especially figures 16(b) and 16(a) confirm the importance of the relation
illustrated in figure 11(a).

6. Discussion

6.1. Summary of the findings

Section 4.1 analyzed the likelihoo# (3D Structure| 2D Structure. In this section, we
confirm and quantify the assumptions used in several surface interpolation studies. Our main
findings from this section are as follows:

e As expected, homogeneous 2D structures are formed by continuous surfaces.

e Surprisingly, considerable amount of edges and texture-like structures are likely to be
formed by continuous surfaces too. However, we confirm the expectation that gap
discontinuities and orientation discontinuities are likely to be the underlying 3D structure
for edge-like structures. As for texture-like structures, they may also be formed by
irregular gap discontinuities.

e Corner-like structures, on the other hand, are mainly formed by gap discontinuities.

In section 5.2, we investigated the predictability of depth at homogeneous 2D structures.
We confirm the basic assumption that closer entities are very likely to be coplanar. Moreover,

we provide results showing that this likelihood increases if there are more edge features in the
neighborhood.
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6.2. Interpretation of the findings

Existing psychophysical experiments (seqy, [Anderson et al., 2002, Collett, 1985]), com-
putational theories (see,g, [Barrow and Tenenbaum, 1981, Grimson, 1982, Terzopoulos, 1988])
and the observation that humans can perceive depth at weakly textured areas suggest that in
the human visual systenan interpolation processs realized that, starting with the local
analysis of edges, corners and textures, computes depth also in areas where correspondences
cannot easily be found.

This paper was concerned with the analysis of the statistics that might be involved in
such an interpolation process, by making use of chromatic range data.

In the first part (section 4), we analyzed which local 2D structures suggest a depth
interpolation process. Using natural images, we showed that homogeneous 2D structures
correspond to continuous surfaces, as suggested and utilized by some computational theories
of surface interpolation (see.g, [Grimson, 1983]). On the other hand, a considerable
proportion of edge-like structures lie on continuous surfaces (see figure i%ag;contrast
difference does not necessarily mean a depth discontinuity. This suggests that interpreting
edges in combination with neighboring corners or edges is important for understanding the
underlying 3D structure [Barrow and Tenenbaum, 1981].

The results from section 4 are useful in several contexts:

e Depth interpolation studies assume that homogeneous image regions are part of the same
surface. Such studies can be extended with the statistics provided here as priors in a
Bayesian framework. This extension would allow making use of the continuous surfaces
that a contrast difference (caused by textures or edge-like structures) might correspond
to.

Acquiring range data from a scene is a time-consuming task compared to image
acquisition, which lasts on the order of seconds even for high resolutions. In
[Torres-Mendez and Dudek, 2006], for mobile robot environment modeling, instead of
making a full-scan of the whole scene, only partial range scan is performed due to time
constraints. This partial range data is completed by using a Markov Random Field
which is trained from a pair of complete range and the corresponding image data. In
[Torres-Mendez and Dudek, 2006], the partial range data is produced in a regular way;
i.e, everynth scan-column is neglected. This assumption, however, may introduce
aliasing in the 3D data acquired from natural images using depth cues, and therefore,
their method may not be applicable. Nevertheless, it could possibly be improved by
utilizing the priors introduced in this paper.

e Automated registration of range and color images of a scene is crucial for several
purposes like extracting 3D models of real objects. Methods that align edges
extracted from the intensity image with the range data already exist (sge,
[Laycock and Day, 2006]). These methods can be extended with the results presented
in this paper in a way that not only edges but also other 2D structures are used for
alignment. Such an extension also allows a probabilistic framework by utilizing the
likelihood P (3D Structurel 2D Structure. Moreover, making use of local 3D structure 110
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types that are introduced in this paper can be more robust than just a gap discontinuity
detection.
Such an extension is possible by maximizing the following energy function:

E(R,T) = / P( 3D Structure atu, v) | 2D Structure atu, v))dudv,(15)

whereR andT are translation and rotation of the range data in 3D space.

In the second part (section 5), we analyzed whether depth at homogeneous 2D structures
is related to the depth of edge-like structures in the neighborhood. Such an analysis is
important for understanding the possible mechanisms that could underlie depth interpolation
processes. Our findings show that an edge feature provides significant evidence for making
depth prediction at a homogeneous image patch that is in the neighborhood. Moreover, the
existence of a second edge feature in its neighborhood which is not collinear with the first
edge feature increases the likelihood of the prediction.

Using second order relations and higher order features for representing the 2D image and
3D range data, we produce confirming results that the range images are simpler to analyze
compared to 2D images (see, [Huang et al., 2000, Yang and Purves, 2003]).

By extracting a more complex representation than existing range-data analysis studies,
we could point to the intrinsic properties of the 3D world and its relation to the image data.
This analysis is important because (1) it may be that the human visual system is adapted
to the statistics of the environment [Brunswik and Kamiya, 1953, Knill and Richards, 1996,
Krueger, 1998, Olshausen and Field, 1996, Purves and Lotto, 2002, Rao et al., 2002], and (2)
it may be used in several computer vision applications (for example, depth estimation)
in a similar way as in [Elder and Goldberg, 2002, Elder et al., 2003, Pugeault et al., 2004,
Zhu, 1999].

In our current work, the likelihood distributions are being used for estimating the 3D
depth at homogeneous 2D structures from the depth of bounding edge-like structures.

6.3. Limitations of the current work

The first limitation is due to the type of scenes that have been usedcenes of man-made
environments which also included trees. Alternative scenes could include pure forest scenes
or scenes taken from an environment with totally round objects. However, we believe that our
dataset captures the general properties of the scenes that a human being encounters in daily
life.

Different scenes might produce quantitatively different but qualitatively similar results.
For example, forest scenes would produce much more irregular gap discontinuities than the
current scenes; however, our conclusions regarding the link between textures and irregular gap
discontinuities would still hold. Moreover, coplanarity relations would be harder to predict for
such scenes since (depending on the scale) surface continuities are harder to find; however, on
a bigger scale, some forest scenes are likely to produce the same qualitative results presented
in this paper because of piecewise planar leaves which are separated by gap discontinuities.
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It should be noted that acquisition of range data with color images is very hard for forest
scenes since the color image of the scene is taken after the scene is scanned with the scanner.
During this period, the leaves and the trees may move (due to wind etc.), making the range
and the color data inconsistent. In office environments, a similar problem arises: due to lateral
separation between the digital camera and range scanner, there is the parallax problem, which
again produces inconsistent range-color association. For an office environment, a small-scale
range scanner needs to be used.

The statistics presented in this paper can be extended by analyzing forest scenes, office
scenes etc. independently. The comparison of such independent analyses should provide more
insights into the relations that this paper have investigated but we believe that the qualitative
conclusions of this paper would still hold.

It would be interesting to see the results presented in the paper by changing the measure
for surface continuity so that it can separate planar and curved surfaces. We believe that such
a change would effect only the second part of the paper.
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Appendix

A.l. Parameters of an ellipse

Let us denote the position of two 3D edges 75 by (Xop): and(Xop)2 respectively. The
vectors between the 3D edges and IP (let usi¢ahdi,) can be defined as:

L = (Xoph —IP),
ly = ((X2p)2 — IP). (16)
Having defined; andi,, the ellipseE(x{, 75) is as follows:

fi=Xop), f2 = (Xop)1, b = |lo] if |li] > |l2],
E(n¢. 7€) = _ 17
(71, m3) { fi = (Xop)a f2 = (Xop)h, b = || otherwise (17)

where(Xop)' is symmetrical withX oy around the intersection point and on the line defined
by X5p and/ P (as shown in figure 14(e)).

A.2. Definition of coplanarity

Let 7° denote either a semi-edgé® or a monor™. Two 7* are coplanar iff they are on the
same plane. When it comes to measuring coplanarity, two criteria need to be tested:
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(@) (b)

Figure 20. Criteria for coplanarity of two planes. (a) According to the angular-difference
criterion of coplanarity, entities A and B will be measured as coplanar although they are on
different planes. In (b), P is the plane defined by entity A. According to the distance-based
coplanarity definition, entities B and C have the same measure of coplanarity. However, entity
C which is more distant to entity A should have a higher measure of coplanarity than entity B
although they have the same distance to plane P (see the text).

(i) Angular criterion: For twon® to be coplanar, the angular difference between the
orientation of the planes that represent them should be less than a threshold. A situation
is illustrated in figure 20(a) where angular criterion holds but the planes are not coplanar.

(i) Distance-based criterion: For two to be coplanar, the distance between the center of
the first7* and the plane defined by the other should be less than a threshold. In
figure 20(b), B and C are at the same distance to the plane P which is the plane defined
by the planar patch A. However, C is more distant to the center of A than B, and in this
paper, we treat that C is more coplanar to A than B is to A. The reason for this can be
clarified with an example: Assume that A, B and C are all parallel, and thatlamar
and the Euclidean distances between A and B are bathits, and between A and C are
respectivelyD andn x D. It is straightforward to see that although B and C have the
same planar distances to A, fer>> 1, C should have a higher coplanarity measure.

It is sufficient to combine these two criteria as follows:
cop(ri, m5) = a(p™, p™2) < T, AND
d(p™, m3)/d(ns, 75) < Ty, (18)

wherep™ is the plane associated 16; a(py, p2) is the angle between the orientationgef
andp.; and,d(., .) is the Euclidean distance between two entities.

In our analysis, we have empirically chosEnpand’}; as 20 degrees and 0.5, respectively.
Again, like the parameters set in section 3.1.4, these values are determined by testing the
coplanarity measure over different samplé&s. is the limit for angular separation between
two planar patches. Bigger values would relax the coplanarity measure, and vice Ngrsa.
restricts the distances between the patches; in analo@y,t@; can be used to relax the

coplanarity measure. As shown in figure 17 for a stricter coplanarity definition @yitind 113
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T, set to 10 degrees and 0.2), different values for these thresholds would quantitatively but
not qualitatively change the results presented in section 5.
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Abstract

In this paper, we present a set of perceptual relations, namely, co-colority, co-planarity, collinearity
and symmetry that are defined between multi-modal visual features that we call primitives.

1 Introduction

According to Marr’s paradigm [29], vision involves extraction of meaningful representations from input
images, starting at the pixel level and building up its interpretation more or less in the following order: local
filters, extraction of important features, the 2%—D sketch and the 3-D sketch.

There is psychophysical evidence and evidence from the statistical properties of natural images that the hu-
man visual system utilizes a set of visual-entity-combining processes, called perceptual organization in the
literature, for forming bigger, sparser and more complete interpretations of the scene (see, e.g., [18, 19, 35]).
Such processes include (i) extraction of the boundary of the objects in the image from the set of unconnected
edge pixels or features [3, 8, 10, 21, 27, 31, 39] utilizing Gestalt laws of grouping, and (ii) interpolation and
extrapolation of unconnected sparse 3D entities for forming more complete 3D surfaces (see, e.g., [13]) uti-
lizing the relations between the 3D entities. Gestalt principles include collinearity, proximity, common fate
and similarity whereas inference of 3D surfaces from a set of 3D entities include relations like coplanarity,
collinearity, co-colority etc. These are essentially second order and higher order relations of local features.
In [26], we have introduced a specific form of a local descriptor that we call a *'multi-modal primitive’
(see section 2) and which can be seen as a functional abstraction of a hypercolumn (see [24]). We distin-
guish between 2D primitives describing local image information and 3D primitives covering local 3D scene
information in a condensed symbolic way.

These primitives serve as a basis for an early cognitive vision system [23, 26, 33] in which operations and
relations on these primitives realizing perceptual grouping principles are used in different contexts (see [26]
for applications). We have utilized these relations for different problems including stereo [34], RBM [32],
estimation of initial grasping reflexes from stereo [5], estimation of depth at homogeneous image structures
[16], and analysis of second-order relations between 3D features [17].

In this paper, we present the set of 2D and 3D relations defined upon the primitives. These relations include
collinearity, cocolority, coplanarity and symmetry. Of these relations, collinearity, cocolority and symmetry
are defined for 2D as well as 3D primitives whereas by definition, coplanarity is meaningful only for 3D
primitives. Table 1 summarizes the relations and on which dimension they are defined.

Relation | 2D
co-planarity
co-colority
collinearity
symmetry

< ===

< X

Table 1: The relations and in which dimension they are defined.

This paper does not focus on any specific application domain but provides a technically detailed definition
of these relations that are usually not described in such detail in publications making use of them.

The paper is organized as follows: In section 2, we briefly introduce our visual features, namely primitives.
In section 3, we describe our definitions of perceptual relations between the visual primitives. In section 5,
we conclude the paper.
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2 Primitives

Numerous feature detectors exist in the literature (see [30] for a review). Each feature based approach
can be divided into an interest point detector (e.g. [14, 4]) and a descriptor describing a local patch of
the image at this location, that can be based on histograms (e.g. [6, 30]), spatial frequency [20], local
derivatives [15, 11, 1] steerable filters [12], or invariant moments ([28]). In [30] these different descriptors
have been compared, showing a best performance for SIFT-like descriptors.

The primitives we will be using in this work are local, multi-modal edge descriptors that were introduced
in [25]. In contrast to the above mentioned features these primitives focus on giving a semantically and
geometrically meaningful description of the local image patch. The importance of such a semantic ground-
ing of features for a general purpose vision front—end, and the relevance of edge-like structures for this
purposes were discussed in [9].

The primitives are extracted sparsely at locations in the image that are the most likely to contain edges.
This likelihood is computed using the intrinsic dimensionality measure proposed in [22]. The sparseness
is assured using a classical winner take all operation, insuring that the generative patches of the primitives
do not overlap (for details, see [26]). Each of the primitive encodes the image information contained by a
local image patch. Multi-modal information is gathered from this image patch, including the position m
of the centre of the patch, the orientation 6 of the edge, the phase w of the signal at this point, the colour ¢
sampled over the image patch on both sides of the edge and the local optical flow f. Consequently a local
image patch is described by the following multi—-modal vector:

™= (m7 9,&)7 C, f7 p)T7 (1)

that we will name 2D primitive in the following.
Note that these primitives are of lower dimensionality than, e.g., SIFT (10 vs. 128) and therefore suffer
of a lesser distinctiveness. Nonetheless, as shown in [34] that they are distinctive enough for a reliable
stereo matching if the epipolar geometry of the cameras is known. Furthermore, their semantic in terms of
geometric and appearance based information allow for a good description of the scene content. It has been
previously argued in [9] that edge pixels contain all important information in an image. As a consequence,
the ensemble of all primitives extracted from an image describe the shapes present in this image.
Advantageously, the rich information carried by the 2D—primitives can be reconstructed in 3D, providing a
more complete scene representation. Having geometrical meaning for the primitive allows to describe the
relation between proximate primitives in terms of perceptual grouping.
In a stereo scenario 3D primitives can be computed from the correspondences of 2D primitives (see figure
1 and [34]):

1= (M,0,Q,C)7, ()

such that we have a projection relation:
P:.II - . 3)

3 Relations

In this section, we present collinearity, cocolority, coplanarity and symmetry relations that are defined on
our visual features.

3.1 Collinearity in 2D and 3D

As the primitives are local contour descriptors, scene contours are expected to be represented by strings of
primitives that are locally close to collinear. In the following, we will explain methods for grouping 2D and
3D primitives into contours.
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Figure 1: Illustration of the primitive extraction process from a video sequence. The 2D-primitives ex-
tracted from the input image (a) (see section 2), and finally the 3D—primitives reconstructed from the
stereo—matches as described as described in [34]. (a) An example input image. (b) A graphic descrip-
tion of the 2D—primitives. (c) A magnification of the image representation. (d) Perceptual grouping of the
primitives as described in [34]. (e) The reconstructed 3D entities. Note that the structure reconstructed is
quite far from the cameras, leading to a certain imprecision in the reconstruction of the 3D—primitives. A

simple scheme addressing this problem is described in [34].

122



Figure 2: Illustration of the values used for the collinearity computation. If we consider two primitives 7;
and 7, then the vector between the centres of these two primitives is written v;;, and the orientations of
the two primitives are designated by the vectors ¢; and ¢;, respectively. The angle formed by v;; and ¢; is
written «;, and between v;; and ¢; is written «;. p is the radius of the image patch used to generate the
primitive.

3.1.1 Collinearity in 2D

In the following, c(l; ;) refers to the likelihood for two primitives 7; and 7; to be linked: i.e. grouped to
describe the same contour.

Position and orientation of primitives are intrinsically related. As primitives represent local edge estimators,
their positions are points along the edge, and their orientation can be seen as a tangent at such a point. The
estimated likelihood of the contour described by those tangents is based upon the assumption that simpler
curves are more likely to describe the scene structures, and highly jagged contours are more likely to be
manifestations of erroneous and noisy data.

Therefore, for a pair of primitives 7; and 7; in image Z, we can formulate the likelihood for these primitives
to describe the same contour as a combination of three basic constraints on their relative position and
orientation — see [34].

Proximity (c,[l; ;]): A contour is more likely if it is described by a dense population of primitives. Large
holes in the primitive description of the contour is an indication that there are two contours which are
collinear yet different. The proximity constraint is defined by the following equation:
— max (1 — vaii‘;_ju ,0)
cpllijl=1—e 7 4)
where p stands for the size of the receptive field of the primitives in pixels; p7 is the size of the neighbour-
hood considered in pixels; and, ||v; || is the distance in pixels separating the centres of the two primitives.

Collinearity (c.,[l;, j]): A contour is more likely to be linear, or to form a shallow curve rather than a sharp
one. A sharp curve might be an indication of two intersecting or occluding contours.

SNCEL
2

where «; and «; are the angles between the line joining the two primitives centres and the orientation of,
respectively, m; and ;.

; &)

Cco[li,j] =1-

Co—circularity (c.;[l; j]): A contour is more likely to have a continuous, or smoothly changing curvature,
rather than a varying one. An unstable curvature is an indicator of a noisy, erroneous or under—sampled
contour, all of which are unreliable.
e T e 7]
sin [ ————
2

) (6)

Ceillij] =1—
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Geometric Constraint (G; j): The combination of those three criteria provided above forms the follow-
ing geometric affinity measure:

G;j= i’/ce[li,j] < Ceollij] - ceillif], (7N

where G; ; is the geometric affinity between two primitives 7; and ;. This affinity represents the likelihood
that two primitives 7; and 7; are part of an actual contour of the scene.

Multi-modal Constraint (M ;): The geometric constraint offers a suitable estimation of the likelihood
of the curve described by the pair of primitives. Other modalities of the primitives allow inferring more
about the qualities of the physical contour they represent. The colour, phase and optical flow of the primi-
tives further define the properties of the contour, and thus consistency constraints can also be enforced over
those modalities. Effectively, the less difference there is between the modalities of two primitives, the more
likely that they are expressions of the same contour. In [7], it is already proposed that the intensity can be
used as a cue for perceptual grouping; our definition goes beyond this proposal by using a combination of
the phase, colour and optical flow modalities of the primitives to decide if they describe the same contour:

Mm‘ = W, Cy [li,j] + wccc[lm‘] +wyrcs [lm‘], (8)

where c,, is the phase criterion, ¢, the colour criterion and cy the optical flow criterion. Each of the three
Wy, We and wy is the relative scaling for each modality, with w,, + we +wyg = 1.

Primitive Affinity (A; ;): The overall affinity between all primitives in an image is formalised as a matrix
A, where A; ; holds the affinity between the primitives 7; and 7;. We define this affinity from equations 7
and 8, such that (1) two primitives complying poorly with the good continuation rule have an affinity close
to zero; and (2) two primitives complying with the good continuation rule yet strongly dissimilar will have
only an average affinity. The affinity is formalised as follows:

c(lij) = Aij = /G (aGi; + (1 - a)M,), ©9)

where « is the weighting of geometric and multi-modal (i.e. phase, colour and optical flow) information
in the affinity. A setting of « = 1 implies that only geometric information ( proximity, collinearity and
co-circularity) is used, while o = 0 means that geometric and multi-modal information are evenly mixed.

3.1.2 Collinearity in 3D

Collinearity in 3D is more difficult to define. Due to the inaccuracy in stereo—reconstruction of 3D position
and orientation, it is impossible to apply strong alignment constraints such as the ones we applied in the 2D
case. Consequently we will define 3D collinearity as follows:

Definition 1 Two 3D-primitives 11; and 11; are said collinear if the 2D-primitives 7} and j they project
onto the camera plane x (defined by a projection relation P* : 11, — my) are all collinear (according to
the definition of 2D—primitive collinearity presented above).

and therefore in the standard case where we have two stereo cameras labelled / and  we have the following
relation:

c(Liz) = cli;) - e )- (10)
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Figure 3: Co—colority of three 2D primitives 7;, 7; and 7. In this case, 7; and 7; are cocolor, so are ;
and m; however, 7; and 7y, are not cocolor.

3.2 Cocolority in 2D and 3D

Two spatial primitives I1; and II; are co—color iff their parts that face each other have the same color. In
the same way as collinearity, co—colority of two spatial primitives Il; and II; is computed using their 2D
projections P1I; = ; and 7;. We define the co—colority of two 2D primitives 7; and 7; as:

COC(T(Z',?T]') =1- dc(ciacj)v

where c; and c; are the RGB representation of the colors of the parts of the primitives 7; and ; that face
each other; and, d.(c;, cj) is Euclidean distance between RGB values of the colors ¢; and c;. In Fig. 3, a
pair of co—color and not co—color primitives are shown.

Euclidean color distance d. is a simple one compared to color distance metrics developed by different in-
stitutes like International Commission on Illumination (CIE). Such metrics are developed to match our per-
ception of colour and are computationally expensive (see, e.g., [38]). For our purposes, Euclidean distance
between RGB values is sufficient and can be replaced by a more complicated distance metric, if desired.
3D co-colority is defined as follows:

Definition 2 Two 3D-primitives I1; and 11; are said cocolor if the 2D-primitives m; and 7 they project
onto the camera plane x (defined by a projection relation P* : Il — my) are co-color (according to the
definition of 2D—primitive cocolority presented above).

3.3 Coplanarity
According to [37],

a set of points in space is coplanar if the points all lie in a geometric plane. For example, three
points are always coplanar; but four points in space are usually not coplanar.

Although the definitions are more or less the same, there are different ways to check the coplanarity of a
set of points [36, 37]. For a set of n points x;...x,, where x; = (x;, yi, 2;), the following methods can be
adopted:

e Forn = 4, x;...x,, are coplanar

— iff the volume of the tetrahedron defined by them is 0 [36], i.e.,

rr y1 oz 1
R
Ty Ya 24 1
— iff the pair of lines determined by the four points are not skew [36]:
(x3 —x1).[(x2 — x1) X (x4 —x3)] = 0. (12)

125



— iff x4 is on the plane defined by x1, X2, X3:
d(X4,P(X1,X2,X3)) = Oa (13)

where P(x1,X2,X3) is the plane defined by P(x1, X2,x3), and d(x, p) is the distance between
point x and plane p.

e Forn > 4, x;...x, are coplanar iff point-plane distances of x4..x,, to the plane defined by (x1, x2, x3)
are all zero:

Zd(xi,P(Xl,Xz,XS)) = 0. (14)
i=4

3.3.1 Coplanarity of bounded planes

A bounded plane p® is part of the plane p with a certain size s and position x. In other words, p® is
equivalent to (n, x, s) where n, X, s are respectively the normal (i.e., orientation), position (i.e., center) and
the size of the bounded plane.

As suggested in [17], two bounded planes pl{, pg are coplanar if:

d(x1,pb)

(a(l’ll,l’lg) < Ta) A\ (d<X1 Xg)

<Ty), (15)

where a(n1, ny) is the angle between the two orientations vectors n; and n;, and 7, and T} are the thresh-
olds.

3.3.2 Coplanarity of 3D primitives

Two spatial primitives II; and IT; are co—planar iff their orientation vectors lie on the same plane, i.e.:
cop(IL;, I;) = 1 — [projy, ., (ti ¥ vij)|, (16)

where v;; is defined as the vector (M; — M j); t; and t; denote the vectors defined by the 3D orientations
©; and ©, respectively; and proj,, (a) is defined as:
a-u
proj,(a) = ——u. 17)
" |2

The co—planarity relation is illustrated in Fig. 4.

3.4 Symmetry in 2D and 3D

Two primitives are symmetric if they are located on two contours which are reflections of each other (see
figure 5(a)). This reflective symmetry between two primitives can be measured by utilizing the angles
between the orientations of the primitives and the line that joins the centers of the primitives.

Let v;; denote the line joining the centers of the primitives, 7; and 7, and also ¢;; and ¢;; be the angles
between v;; and the lines defined by the orientations of 7; and 7, respectively (see figure 5). Then, two
2D primitives 7; and 7; can be considered symmetric, if ¢;; = ¢;; with a symmetry axis a;; defined as

follows:
o L(Cij; (91) if 92 = Gj,
Wi = { L(c;j; vij), otherwise, (13)

7
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Figure 4: Co—planarity of two 3D primitives II; and I1I;. ¢; and t; denote the vectors defined by the 3D
orientations ©; and O, respectively.

where L(x;6) is a line that goes through a point = with orientation 6; int ([, l,,) is the intersection point
of two lines denoted by Ij, and [,,,; ¢;; is defined as the mid-point of v;; (i.e., (m; +m;)/2); and, a;; is the
angle of the line that joins the points ¢;; and int(L(m;; 6;), L(mj; 6;)).

The symmetry axis a;; is undefined if the primitive orientations 6; and 6;, and v;; are all parallel, which is
the case when both primitives are located on the same linear segment of a contour. This is the case for 7;
and 7, in figure 5(b) and 5(c). If the symmetry axis a;; is undefined, a primitive pair should not be regarded
as symmetric, but collinear.

Figure 5 illustrates a few symmetric and non-symmetric primitives. In figure 5(b) and 5(c), as the primitives
m; and 7y, are on the same contour, a;; is parallel with the primitive orientations 6;, ) and v

Taking collinearity into account, symmetry between two primitives 7; and 7; is defined as follows:

0 if Cco[li,j} > Tc,

1 — |sin(¢i; — ¢ji)| otherwise, (19)

sym(sm;) = {
where c.,[l; ;] is the collinearity relation and 7 is a threshold, determining if 7; and 7; are collinear.
Like collinearity and co—colority, the symmetry of two 3D primitives II; and II; is computed using their
2D projections 7; and 7;:

Definition 3 Two 3D-primitives I1; and I1; are said to be symmetric if the 2D-primitives 7; and 77 they
project onto the camera plane x (defined by a projection relation P* : 11, — ) are symmetric (according
to the definition of 2D—primitive symmetry presented above).

4 Results

In figure 6, the coplanarity, cocolority and collinearity relations are shown for two different example scenes
shown in figure 6(a) and (b). The results are from our 3D display tool called Wanderer, and for computa-
tional reasons, 3D primitives are shown in squares. The relations are displayed only for a primitive which
is selected with the mouse as showing relations between all primitives disables visibility.

From the figure we see that coplanarity is a more common relation than cocolority or collinearity. This
suggests that coplanarity alone is not directly usable for analysis or applications in 3D, and it needs to be
accompanied with other relations as proposed and utilized in [2, 16].
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5 Conclusion

In this paper, we presented cocolority, coplanarity, collinearity and symmetry relations defined on multi-
modal visual features, called primitives.

Such relations have been utilized in different perceptual organization problems as well as analysis of how
the natural scenes are structured (see, e.g., ([3, 8, 10, 13, 16, 17, 21, 27, 31, 34, 39]), and the importance
of such relations, as well as their psychophysical and biological plausibility have been acknowledged in the
literature (see, e.g., [18, 19, 35]).
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a2 .—: @
T Vij k n
ki
a;= ajké m

(©)
Figure 5: Illustration of the definition of symmetry. ¢;, t; and ¢;, denote the vectors defined by the orienta-

tions 0;, 0; and 0y, respectively. Primitives 7; and 7; are symmetric in (a) and (b), but not in (c). 7; and 7,
are symmetric in (c), but not in (a) or (b).

12

131



Coplanarity

Cocolority

Collinearity

Figure 6: The coplanarity, cocolority and collinearity relations on two different examples shown in (a) and
(b). The results are from our 3D display tool called Wanderer, and for the sake of speed, 3D primitives are
shown in squares. The relations are shown only for a selected primitive as showing relations between all

primitives disables visibility.
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Abstract

Depth at homogeneous or weakly-textured image areas is difficult to obtain because such image
areas suffer the well-known correspondence problem. In this paper, we propose a voting model that
predicts the depth at such image areas from the depth of bounding edge-like structures. The depth at
edge-like structures is computed using a feature-based stereo algorithm, and is used to vote for the depth
of homogeneous image areas. We show the results of our ongoing work on different scenarios.

1 Introduction

Extraction of 3D structure from 2D images is realized by utilizing a set of inverse problems that include
structure from motion, stereo vision, shape from shading, linear perspective, texture gradients and occlusion
[3]. These cues can be classified as pictorial, or monocular, (such as shading, utilization of texture gradients
or linear perspective) and multi-view (like stereo and structure from motion). Depth cues which make use of
multiple views require correspondences between different 2D views of the scene. In contrast, pictorial cues
use statistical and geometrical relations in one image to make statements about the underlying 3D structure.
Many surfaces have only weak texture or no texture at all, and as a consequermcergipondence prob-

lem is very hard or not at all resolvable for these surfacBievertheless, humans are able to reconstruct

3D information for these surfaces, too. Existing psychophysical experimente(ge§?, 4]) and compu-

tational theories (see.g, [1, 6, 26]) suggest that in the human visual systaminterpolation process

realized that starting with the local analysis of edges, corners and textures, computes depth also in areas
where correspondences cannot easily be found.

In this paper, we are interested in prediction of depth at homogeneous image patchesr(oatied this

paper) from the depth of the edges in the scene using a voting model. We start by creating a representation
of the input stereo images in terms of local image patches corresponding to edge-like structures and monos
(as introduced in [15] and section 2, and described in detail in [16]). The depth at edge-like patches is
extracted using feature-based stereo computation between the two images (using the method introduced in
[22]). The depth that is extracted at the bounding edge-like patches of a mono using stereo votes for its
depth.

We would like to distinguistdepth predictionfrom surface interpolatiorbecause surface interpolation
assumes that there is already a dense depth map of the scene available in order to be able to estimate the
3D orientation at points (see,g, [6, 7, 8, 18, 19, 25, 26]) whereas our understanding of depth prediction
makes use of only 3D line-orientations at edge-segments which are computed using a feature-based stereo
proposed in [22].

A typical scenario that our model is designed for is shown in figure 1 where an input stereo pair and the
stereo data (computed using [22]) are displayed. We see that computed stereo information has strong outliers
which prohibit asurface interpolatiormethod as it is not possible to differentiate between the outliers and

the reliable stereo information. Moreover, the stereo information that should be reliable at the edges of
the road turn out not to share a common surface nor the same 3D line (see figure 1(c)). Applying a surface
interpolation method on such input data is expected to lead to a wrong road surface prediction. In this paper,
we will show that our depth prediction method is able to cope with such strong outliers.

1.1 Related studies

It is fair to count the early works of Grimson [6] as the pioneers of surface interpolation. In [6], Grimson
proposed fitting square Laplacian functionals to surface orientations at existing 3D points utibzirigae
consistency constraimalled 'no news is good news’. The constraint argues that if two image points do not
have a contrast difference in-between, then they can be assumed to be on the same 3D surface (see [11] for
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a quantification of this assumption). This work is extended in [7] with use of shading information. [6, 7]
assume that surface information is available, and the input 3D points are dense enough for second order
differentiation.

In [1], surface orientation at homogeneous image areas is recoveratehyretingline drawings Lines

are classified as extremal or discontinuity by making use of the junction labels and global relations like
symmetry and parallellism. They assume that (1) extremal points (the boundaries of the objects) in an
image correspond to surface orientations which are normal to the image curve and the line of sight, and that
(2) discontinuities (lines other than extremal points) lead to surface orientations which are normal to space
curve. The underlying assumptions of [1] are that (1) a clean contour of the scene is provided, and that (2)
the object is separated from the background. Moreover, the results provided in [11] suggest that it may not
be a good idea to assume that edges correspond to only certain types of surface orientations. [21, 24, 27, 28]
are similar to [1] as far as our paper is concerned.

In [8], 3D points with surface orientation are interpolated using a perceptual constraintaaiéedfacity

which produces a 3D association field (which is called Diabolo field by the authors) similar to the associ-
ation field used in 2D perceptual contour grouping studies. If the points do not have 3D orientation, they
estimate the 3D orientation first and then apply the surface interpolation step. In [18, 19], it is argued that
stereo matching and surface interpolation should not be sequential but rather simultaneous. For this, they
employ the following steps: (1) Normalized-cross correlation and edge-based stereo are computed. (2) The
disparities are combined and disparities corresponding to inliers, surfaces and surface discontinuities are
marked using tensor voting. (3) Surfaces are extracted using marching cubes approach. At this stage, sur-
faces are over the boundaries. (4) At the last step, over-boundary surfaces are trimmed. They assume sphere
as their surface model when interpolating surface orientations.

Our method is similar to shape from silhouette methods which try to estimate the 3D information from the
occluding edges of a single object (seay, [13, 20]). As put forward in [20], these methods are limitted to
spherical objects, and the underlying principles are valid only for occluding edges.

In [25, 26], stereo is computed at different scales, and instead of collapsing the results of these different
scales into a single layer of disparity estimation and then applying surface interpolation, surface interpola-
tion is applied separately for each scale and the results are combined.

Our work is different from the above mentioned worksin that:

e Our approach does not assume that the input stereo points are dense enough to compute their 3D
orientation (this is why the authors of this paper prefer to distinguish between depth prediction and
surface interpolation). Instead, our method relies on the 3D line-orientations of the edge segments

(@) (b) ©

Figure 1. Aninput stereo pair ((a) and (b)) and how a feature-based stereo algorithm (taken from [22]) looks
like (c).
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which are extracted using a feature-based stereo algorithm (proposed in [22]).

e We employ a voting method like [18, 19] but is different, allowing long-range interactions in empty
image areas, in order to predmiththe depth and the surface orientation.

The paper is organized as follows: In section 2, we introduce how the images are represented in terms of
local image patches. Section 3 describes the 2D and 3D relations between the local image patches that are
utilized in the depth prediction process. Section 4 gives the outline of how the depth prediction is performed.
In section 5, the results are presented and discussed. Finally, in section 6, the paper is concluded.

2 Visual Features

The visual features we utilize (called primitives in the rest of the paper) are local, multi-modal feature
descriptors that were intoduced in [15]. They are semantically and geometrically meaningful descriptions
of local patches, motivated by the hyper-columnar structures in V1 ([9]).

An edge-like primitive can be formulated as:

ﬂ-e: (xaeku (Clacmvc’l‘)vf)v (1)

wherex is the image position of the primitivé, is the 2D orientationy represents the contrast transition;

(c1, cm, ¢ ) IS the representation of the color, corresponding to the ¢gft the middle ¢,,,) and the right

side ¢,) of the primitive; and,f is the optical flow extracted using Nagel-Enkelmann optic flow algorithm.

As the underlying structure of an homogeneous image patch is different from that of an edge-like patch, a
different representation is needed for homogeneous image structures (caiteglin this paper):

m

™ = (Xv C)v (2)

wherex is the image position, anglis the color of the mono.

See [17] for more information about these modalities and their extraction. Figure 2 shows extracted primi-
tives for an example scene.

7 is a 2D feature which can be used to find correspondences in a stereo framework to create 3D primitives
(as introduced in [14, 23]) with the following formulation:

I° = (Xu@vgv(clvc’ﬁnc?“))’ (3)

whereX is the 3D position@ is the 3D orientationf2 is the phase (i.e., contrast transition); afig, c,,,, ¢,
is the representation of the color, corresponding to the ¢gff the middle ¢,,,) and the right sided) of
the 3D primitive.

In this paper, we estimate the 3D representalidhof monos which stereo fails to compute:

™ = (X,n,c), (4)

whereX andc are as in equation 2, andis the orientationi(e., normal) of the plane that locally represents
the mono.

3 Relations between Primitives

Sparse and symbolic nature of primitives allows the following relations to be defined on them. For more
information about relations of primitives, see [10].

3
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(a) Input image.

(b) Extracted primitives.

Figure 2: Extracted primitives (b) for the example image in (a).
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Figure 3: lllustration of the primitive extraction process from a video sequence. The 2D—primitives ex-
tracted from the input image (a) (see section 2), and finally the 3D—primitives reconstructed from the
stereo—matches as described as described in [@3]An example input image(b) A graphic descrip-

tion of the 2D—primitives(c) A magnification of the image representati¢d) Perceptual grouping of the
primitives as described in [23])e) The reconstructed 3D entities. Note that the structure reconstructed is
quite far from the cameras, leading to a certain imprecision in the reconstruction of the 3D—primitives. A

simple scheme addressing this problem is described in [23].
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Figure 4: Co—planarity of two 3D primitiveld; andlII.

3.1 Co—planarity

Two 3D edge primitivesI; andlI; are co—planar iff their orientation vectors lie on the same plane, i.e.:
COp(Hf,H;) = 1 - |prOJ thvij (tz X UZ])|7 (5)
whereuv;; is defined as the vectdX,; — X;); t; andt; denote the vectors defined by the 3D orientations
and©;, respectively; andyroj ,(a) is defined as:
. a-u
proj ,(a) = ——Zu. (6)
“ [ a [

The co—planarity relation is illustrated in Fig. 4.

3.2 Linear dependence

Two 3D primitiveslI{ andII are linearly dependent iff thenreelines which are defined by (1) the 3D
orientation ofII, (2) the 3D orientation ofI°; and (3)v;; are identical. Due to uncertainty in the 3D
reconstruction process, in this work, the linear dependence of two spatial prinbifhasdII is computed
using their 2D projections and~§. We define the linear dependence of two 2D primitir¢sindr{ as:

lin(rf, m5) = |proj,,;ti| > Th A |proj,, t;| > Th, (7)

wheret; andt; are the vectors defined by the orientatiéhandd;, respectively; andl. is a threshold.

3.3 Co—colority

Two 3D primitiveslI andII; are co—color iff their parts that face each other have the same color. In the
same way as linear dependence, co—colority of two spatial primitlyesdIl; is computed using their 2D
projectionsr{ andr. We define the co—colority of two 2D primitivest andr¢, as:

coc(r,m5) = 1 —dc(ci, ¢5), (8)

wherec; andc; are the RGB representation of the colors of the parts of the primitifesd~ that face
each other; and].(c;, c;) is Euclidean distance between RGB values of the calpasidc;.

Co-colority between an edge primitive and and a mono primitive™, and between two monos can be
defined similarly (not shown here).

In Fig. 6, a pair of co—color and not co—color primitives are shown.

6
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Figure 5: Linear dependence of threg, 7¢; andz®;. In this exampler®; is linearly dependent with®;
whereasr€y, is linearly independent of other primitives.

Figure 6: Co—colority of three 2D primitives{, 7; andr. In this exampler{ and~? are cocolor, so are

m; andmy; howeverr$ andry are not cocolor.

4 Formulation of the model

For the prediction of the depth at monos, we developed a voting model. In a voting model, there are a set of
voters that state thegpinionabout a certain event A voting model combines these votes in a reasonable
way to make a decision about the event

In the depth prediction problem, the evertb be voted about is the depth and the 3D orientation of a mono
7™, and the voters are the edge primitifes'} (for ¢ = 1, ..., Ng) that bound the mono. In this paper, we

are interested in the predictions of pairstg§, which are denoted b, for j = 1, ..., Np. While forming a

pair P; from two edgesr§ andr{, from the set of the bounding edges of a martty we have the following
restrictions:

1. 7§ and~{, should share the same color with the morio (i.e., the following relations should hold:
coc(m§, mf,) andcoc(rs, ™).

2. The 3D primitiveslI§ andIlj, of 7§ and={, should be on the same plane( cop(II{, I17)).
3. «¢ andr{, should not be linearly dependent so that they can define only one plane (in (7§, 7f)).

In figure 7, such restrictions are illustrated for an example mono and a set of edge primitives that bound it.
The primitivesw; andwy, are on the same line.€., they are linearly dependent), and they define infinitely
many planes. As for primitives; andry, they cannot define a plane as they are not on the same plane, nor
do they share the same color.

The votev; by a pairP; can be parametrized by:

V; = (X, n), (9)

whereii is the normal of the mone™, and:z is its depth relative to the plane defined By
Eachv; has an associated reliability or probability They denote how likely the vote is based on the
believes of paitP;. It can be modeled as a function of the distance of the mdhto the intersection point

7
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Figure 7: A set of primitives for illustrating why the relations coplanarity, cocolority and linear dependence
are required as restrictions for forming pairs from edges.

IP:
r; = f(d(II™, B)). (10)

r; can be weighted by the confidences of the elements of thePp#iat reflect their quality.

4.1 Bounding edges of a mono

Search Area Without Grouping With Grouping Input Image

a)

b)

Figure 8: Finding bounding edge primitives with and without grouping information for two different monos
which are marked in black in the first column. Using grouping information produces a more complete
boundary finding as shown in (a). However, using grouping may include unwanted edge primitives in the
boundary as shown in (b).

Finding the bounding edges of a momn® requires making searches in a set of directidns = 1... V4 for

the edge primitives. In each directidp, starting from a minimum distand®,,,;,,, the search is performed

upto a distance oR,,,, in discrete steps;, j = 1...N,. If an edge primitiver® is found in directiond; in

the neighborhoofl of a steps;, 7° is added to the list of bounding edges and the search continues with the
next direction.

The above mentioned method for finding the bounding edge primitives will lead to an incomplete and sparse
boundary detection (see figure 8) because the search is performed only in a set of discrete directions. This
can be improved by making use of the contour grouping information; when an edge primiiiiséound

in a directiond; at steps;, if 7° is part of a groug, then all the edge primitives i& can be added to the

list of bounding edges (see [23] for information about the grouping method we employ in this paper).

8
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Image

Figure 9: lllustration of how the vote of a pair of edge primitives is computed. The 3D primififesid

115 corresponding to the 2D primitives and~ define the plang. The intersection op with the rayl that

goes through the 2D mong™ and the camera center C then determines the position of the estimated 3D
monoII™. The 3D orientation ofI™ is set to be the orientation of the plape

Grouping information can lead to more complete and dense boundary finding as shown in figure 8(a);
however, for certain objects, it may lead to worse results due to low contrast edges (see figure 8(b)).

4.2 The vote of a pair of edge primitives on a mona™

A pair P; of two edge primitivesr; andrj, with two corresponding 3D edge primitivék; andII;, which
are co-planar, co-color and lineaitydependentdefines a plang with 3D normaln and positionX.

The votey, of 115 andIIj is computed by the intersection of the planeith the ray! that goes through the
mono, 7™, and the focus of the camera (see figure 9). Thel iaycomputed using the following formula

(131, pg41l):
Xa = P (=p+ AF), (11)

wherezZ is the homogeneous position of*; P andp are respectively the 3x3 and the 3x1 sub-parts of the
3x4 projection matrixP,, so thatP,, = [P pl|; and,\ is an arbitrary number. By using two different values
for A, two different points on ray are extracted which then are used to compute thé.ray

Because the rakis unique for a mona™, all the votes processed for the mom® will be on rayl. This
property can be exploited for clustering the votes as discussed in section 4.3

4.3 Combining the votes

The votes can be integrated using different ways to estimate the 3D represefitatadm 2D monor™:

e Weighted averaging:
Np
™ =C Y v, (12)
=1

whereC is a normalization constant.

e Clustering:
Weighted averaging is prone to outliers which can be overcome by utilizing the set of clusters in the

9
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votes. Let us denote the clustersdyyor ¢ = 1, ...N.. Then, one integration scheme would be to take
the cluster that has the highest average reliability:

1
II™ = arg max, 7 > o (13)
(&

vj € ¢

wherer; is the reliability {.e., confidence) associated to the vote
An alternative can use the most crowded cluster:

IT™ = arg max, #c;. (14)

It is also possible to combine the number of votes and the average reliability of a cluster for making
a decision.

As mentioned above, weighted averaging is prone to outliers but is fast. Clustering the votes can filter
outliers whereas is slow. Moreover, clustering is an ill-posed problem, and most of the time, it is not trivial
to determine the number of clusters from the data points that will be clustered.

In this paper, we implemented (1) a histogram-based clustering where the number of bins is fixed, and the
best cluster is considered to be the bin with the most number of elements, and (2) a clustering algorithm
where the number of clusters is determined automatically by making use of a cluster-regularity measure and
maximizing this measure iteratively.

(1) is a simple but fast approach whereas (2) is considerably slower due to the iterative-clustering step.
Suprisingly, our investigations showed that (1) and (2) produce almost identical results (the comparative
results are not provided in this paper). For this reason, we have adopted (1) as the clustering method for the
rest of the paper.

4.4 Combining the predictions using area information

3D surfaces project as areas into 2D images. Although one surface may project as many areas in the 2D
image, it can be claimed that the image points in an image area are part of the same 3D surface[SK: This
assumption does not always hold. | need to elaborate.].

Figure 10 shows the predictions of a surface. Due to strong outliers in the stereo computation, depth pre-
dictions are scattered around the surface that they are supposed to represent. We show that it is possible to
segment the 2D image into areas based on intensity similarity and combine the predictions in areas to get a
cleaner and more complete surface prediction.

We segment an input imag@ginto areasA;, i = 1, .., N4 using co-colority (see section 3) between primi-

tives utilizing a simple region-growing method; the areas are grown until the image boundary or an edge-like
primitive is hit. Figure 11 shows the segmentation of one of the images from figure 1.

In this paper, we assume that eathhas a corresponding surfagedefined as follows:

Si(x,y,2) = ar® +by* + c2® + dory + eyz +frz +gr +hy +iz = 1. (15)

Such a surface model allows a wide range of surfaces to be represented, including spherical, ellipsoid,
guadratic, hyperbolic, conic, cylinderic and planar surfaces.

S; is estimated from the predictions iy by solving for the coefficients using a least-squares method. As
there are nine coefficients, such a method requires at least nine predictions to be availabledin &ora

the predictions shown in figure 10, the following surface is estimated which is shown in figure 12 using a
sparse sampling (only non-zero coefficients are shown):

Sp=15x10""y2 +5x 10752z — 1.9 x 1072 + 8 x 103y + 1.2 x 1032 = 1. (16)
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Figure 10: The predictions on the surface of the road for the input images shown in figure 1 (predictions
are marked with red boundaries). The predictions are scattered around the plane of the road, and there are
wrong predictions due to strong outliers in the computed stereo.
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Figure 11: Segmentation of one of the input images given in 1 into areas using region-growing based on
primitives.
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Figure 12: The surface given in equation 16 which is extracted from the predictions shown in figure 10.
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Figure 13: The predictions from 10 that are corrected using the extracted stisfabewn in equation 16
and figure 12.

Sp in equation 16 is mainly a planar surface with small quadratic coefficients caused by outliers.

Having an estimated; for an areaA,, it is possible tocorrectthe mono predictions using the estimated
surfaceS;: Let X,, be the intersection of the surfadg with the ray that goes througt™ and the camera,
andn,, be the surface normal at this point (definedgy = (65;/0.,65;/dy,0S5;/6-) ). X,, andn,, are
respectively the corrected position and the orientation of nidfio

Corrected 3D monos for the example scene is shown in figure 13. Comparison with the initial predictions
which are shown in figure 10 concludes that (1) outlierscameectedwith the extracted surface represen-
tation, and (2) orientations and positions are qualitatively better.

5 Results

The test cases include kitchen scenarios and road scenarios which are intended for PACO+ and Drivsco
projects, respectively. The results of our model is shown for a few examples in figures 14, 15, 16, 17 and
18.

The results show that inspite of limited 3D information from feature-based stereo which may contain strong
outliers in some of the scenes (as shown in figure 1), our result is able to predict the surfaces.

6 Conclusion

In this paper, we introduced a voting model that estimates the depth at homogeneous or weakly-textured
image patches (called monos) from the depth of the bounding edge-like structures. The depth at edge-like
structures is computed using a feature-based stereo algorithm [22], and is used to vote for the depth of a
mono, which otherwise is not possible to compute easily due to the correspondence problem.

The method presented in this paper is an ongoing work. In the future, the reliability of each vote will
be replaced by the statistics collected from chromatic range data (see [12]). Moreover, comprehensive
comparison as well as possible combination with dense stereo methods are going to be investigated.

7 Acknowledgments
This work is supported by Drivsco projects.
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(@ (b)

Figure 14: Experiment results on an artifiddtichenscene (a) Left image of the input stereo paib) The
predictions of our model.

]

@ (b)

Figure 15: Experiment results on a road scd@a¢Left image of the input stereo paifh) The predictions
of our model.

13

148



@ (b)

Figure 16: Experiment results on a road scega@ Left image of the input stereo paifb) The predictions
of our model.

(@) (b)

Figure 17: Experiment results orkachenscene (a) Left image of the input stereo pa{b) The predictions
of our model.
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Figure 18: Experiment results on an indoor road scdagLeft image of the input stereo paitb) The
predictions without corrections from the fitted surfac@3.The predictions after surface corrections. Note
that due to outliers in the predictions, surface fitting may not improve original predictions.
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Abstract

We present a novel representation of visual information, based on local symbolic descriptors
that we call primitives. These primitives: (1) combine different visual modalities, (2) associate
semantic to local scene information, (3) reduce the bandwidth of the information exchanged
across teh system. First, 2D primitives are extracted from images. In a second step, stereo—
pairs of 2D—Primitives are used to reconstruct information about the scene structure leading to
3D—Primitives with additional semantic properties.

Since the Primitives allow for strong predictions, based on statistical dependencies as well
as the deterministic change of image structure under coherent motion, they serve to initiate
a disambiguation process and form a link to higher level cognitive tasks. In this context, we
briefly describe different applications of our representation: (1) their role in an early cognitive
architecture integrating perceptual grouping and motion (2) depth prediction at homogeneous
image patches, (3) learning of object representations, and (4) grasping in the context of vision
based robotics.

We also discuss the distinguishing properties of our representation and compare them with
other approaches.

1 Introduction

There exists a large amount of evidence that the human visual system, in its first cortical stages,
processes a number of aspects of visual data (see, e.g., [1,2]). These aspects, in the following called
visual modalities, cover, e.g., local orientation [1,3], colour [3], junction structures [4], stereo [5] and
optic flow [3]. At the first stage of visual processing (called 'Early Vision’ in [6]), these modalities
are computed locally for a certain retinal position. At a later stage (called ‘Early Cognitive Vision’
in [6]), results of such local processing become integrated with the spatial and temporal context.
Computer vision has dealt to a large extent with these modalities separately and in many computer
vision systems, one or more of the above-mentioned aspects are processed (see, e.g., [7-9]).

An important problem, the human visual system as well as any artificial visual system has to cope
with, is the large amount of ambiguity and noise in these low level modalities that is irreducible
by local processes only. Reliable actions require a more stable representation of visual features.
As a consequence, a disambiguation process that makes use of contextual information is required.
In [10] we have described two main regularities in visual data (well recognised in the computer vision
community) that support such a disambiguation process: (i) coherent motion of rigid bodies; and
(ii) statistical interdependencies underlying most grouping processes [11-13]. These two regularities
allow predictions between locally extracted visual events, and verification of the spatio—temporal
coherence of transient perceptual hypotheses.

The establishment of such a disambiguation process presupposes communication of temporal and
spatial information, requiring the local representation of visual data to comply with the two prop-
erties:

Property 1 Predictability The local representation of visual data allows for rich predictions
between related visual events — e.g., the change of position and appearance of a local patch under
a rigid body motion.

and

Property 2 Limited Bandwidth The local representation of visual data reduces the dimension-
ality of the representation of the local signal. This allows for the process to work with limited
bandwidth when spatially and temporally distinct visual events become related by predictions.
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These two properties demand for a condensed representation of visual information and it is argued
in in [14] that the need for properties 1 and 2 naturally results in symbolic representations.

In this work, we present a novel kind of scene representation, based on local symbolic descriptors
that we call visual primitives (see Fig. 1). A primitive combines different visual modalities into
one local feature descriptor (see sections 2 and 3), and thus, allows for a condensed representation
of the visual scene (satisfying property 2). Furthermore, primitives allow for the formulate of
predictions (property 1) using statistical dependencies from grouping and motion. These statistical
dependencies bootstrap a disambiguation process that is described in, e.g., [15,16].

The system we present processes information over multiple stages (for an overview, see Fig. 1),
described in the following sections. In section 2, individual modalities are computed by linear
and non-linear filtering processes. Section 3 describes the condensation process that extracts 2D-
primitives. In section 4, stereo—pairs of 2D-primitives are used to infer information about the
scene structure, in terms of $D—primitives. Section 5 briefly describes some applications where this
framework was used. In section 6, we discuss the distinguishing properties of our representation
and compare them with other methods.

2 Analysis of the local signal structure

In section 2.1, we will first describe how we distinguish different kinds of local image structures.
The processing of the modalities (i.e. , orientation, phase and optic flow) is described in section
2.2 and 2.3. Fig. 1b illustrates the results of the process described herein.

2.1 Intrinsic dimension

Different kinds of image structures coexist in natural images: homogeneous image patches, edges,
corners, and textures. Furthermore, certain concepts are only meaningful for specific classes of
image structures. For example, the concept of orientation is well defined for edges or lines but not
for junctions, homogeneous image patches, or most textures. As another example, the concept of
position is different for a junction as compared to an edge or an homogeneous image patch — see
Fig. 2.1. In homogeneous areas of the image, no particular location can be defined (Fig. 2.1a);
therefore, an equidistant sampling is appropriate. For line or edge structures (Fig. 2.1b), position
can be defined using energy maxima. However, because of the aperture problem, the energy
maximum will span a one—-dimensional manifold, and therefore the feature can be localised only up
to this manifold. This results in a fundamental ambiguity in the localisation of local edge or line
features. By contrast, a junction’s locus can be unambiguously defined by the intersection of the
lines (see Fig. 2.1c). Similar considerations are required for other modalities such as colour, optic
flow and stereo (see section 2.3).

Hence, before applying concepts such as orientation or position, we need to classify image patches
according to their junction—ness, edge—ness or homogeneous—ness. The intrinsic dimension (see,
e.g., [19,20]) is a suitable classifier in this context [18]. Ideal homogeneous image patches have an
intrinsic dimension of zero (id0), ideal edges are intrinsically One-dimensional (id1) while junc-
tions and most textures have an intrinsic dimension of two (id2). Going beyond common discrete
classification [20,21], we use a continuous formulation [18,22,23] that allows for a formulation of
reasonable confidences for the different image structure classes. We classify image patches accord-
ing to the dimension of the subspace that is occupied by the local spectral energy. When looking at
the spectral representation of a local image patch (see Fig. 2.1), we see that the spectral energy of
an intrinsically zero—dimensional signal is concentrated in the origin (Fig. 2.1a), whilst the energy
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d)

c)

Early Cognitive Vision .

Left image Right image

Figure 1: Overview of the primitive extraction scheme. a) a stereo—pair of images obtained from
a pre—calibrated stereo rig. Therefrom, Early Vision processes are computed as shown in b): the
left image shows the optical flow extracted using the Nagel algorithm [17] — see section 2.3. Each
pixel represents the local flow at this location by its colour: the hue of indicates the orientation of
the flow vector (as shown on the borders of the image) and the intensity the magnitude of the flow
(where black stands for a zero flow); the bottom row of images shows the magnitude, orientation
and phase of the signal — see section 2.2 — from left to right respectively; The upper row shows
the id0, id1 and id2 confidences — see section 2.1 — from left to right respectively. In all those
graphs the intensity encodes the strength of the filter response (white for high, black for low). In
¢) the information from the early vision is combined in a sparse, condensed way — see section 3.
The image shows the primitives extracted from the images shown in a) d) these primitives are
then matched across the two stereco—views and the correspondences thereof allows reconstructing
3D—primitives, that extend naturally the primitive information to 3D space — see section 4.
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a) b) ©)

line variance

i0D origin variance ilD

Figure 2: (a) Illustration of the triangular topology of the intrinsic dimension — see [18]; (b) Dif-
ferent localisation problems faced by different classes of image structures: namely a) homogeneous
area; b) edge or line; and c¢) junction (see text).

of an intrinsically one-dimensional signal spans a line (Fig. 2.1b) and the energy of an intrinsically
two—dimensional signal varies in more than one dimension (Fig. 2.1c).

Thus, we compute for each pixel position @, the three confidences c;qo(x), cig1(x), and cig2(x),
that take values in [0, 1] and add up to one — illustrated, for different scales, in the three bottom
rows of Fig. 3. For details of the computation, we refer to [18,22,23], and to [24,25] for some
applications of this concept.

The current version of our system focuses on intrinsically one dimensional signals and uses the
triangular representation defined above to discard non—edge/non-line structures. There is some
ongoing work on the integration of homogeneous (id0) and corner structures (id2) into this frame-
work — see, [25,26].

2.2 Orientation and phase

The extraction of a primitive starts with a rotation invariant quadrature filter that performs a
split of identity of the signal [27]: it decomposes an intrinsically one-dimensional signal (as defined
in the previous section) into local amplitude (see Fig. 3, top row), orientation (see Fig. 3, second
row), and phase (see Fig. 3, third row) information.*

The local amplitude is an indicator of the likelihood for the presence of an image structure. Orien-
tation encodes the geometric information of the local signal while phase can be used to differentiate
between different image structures ignoring orientation differences. Phase for possible grey level
structures forms a continuum between [—7,7) and encodes the grey level transition of the local
image patch across the edge (as defined by the orientation) in a compact way (as one parameter
only), e.g., a pixel positioned on a bright line on a dark background has a phase of 0 whereas a
pixel positioned on a bright/dark edge has a phase of —7/2 (see Fig. 4a and, e.g., [27,29,30]). Note
that phase is 27—periodic and continuous such that a phase of —m represents the same contrast
transition as a phase of 7. Orientation 6 (taking values in the the interval [0,7)) and phase ¢ are
topologically organised on a half torus (see Fig. 4c), and if we extend the concept of orientation
to that of a direction (therefore taking values in [—m, ), see also [21]) then the topology of the
direction/phase space becomes a complete torus (see Fig. 4b). On a local level, the direction is not
decidable [29]; therefore, we will use the half torus topology.

This topology is crucial for the definition of suitable metrics for phase and orientation. For example,

!Note that amplitude, orientation and phase can be analogously computed by Gabor wavelets or steerable filters
and that our representation does not depend on the filter introduced in [27]. For a discussion of different approaches
to define harmonic filters as well as their advantages and problems, we refer to [28].
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Figure 3: Illustration of the low-level processing for primitive extraction. Each column shows
the filter response for a different peak frequency: respectively 0.110 (left), 0.055 (middle) and
0.027 (right). Each row shows response maps for, from top to bottom, local amplitude, orien-
tation, phase, intrinsically zero-Dimensional (id0), one-Dimensional (id1) and two-Dimensional
(id2) confidences. In all of those graphs, white stands for a high response and black for a low one.
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tipodal points

(a) phase (b) direction/phase space (c) orientation/phase space

Figure 4: (a) Phase ¢ describes different intensity transitions, e.g., ¢ = 7 encodes a dark line on a
bright background, ¢ = —7/2 encodes a bright—dark edge, ¢ = 0 encodes a bright line on a dark
background and ¢ = 7/2 encodes a dark-bright edge. The phase parameter embeds these distinct
cases into a 2m—periodic continuum shown in (a). [Acknowledgement: Michael Felsberg] (b) The
torus topology of the orientation—phase space. The phase value ¢ is mapped on the cross section
of the torus’ tube whereas the orientation § maps to the revolution angle the torus. (c¢) When
direction is neglected, we get a half torus connected as indicated.

a black—white step edge (¢ = 7/2) with orientation 6 should have a small metrical distance to a
white-black step edge (p = —7/2) of orientation © — @ but a large distance to a black—white step
edge of orientation m—6@. However, a white line on a black background with an orientation 0 (¢ = 0)
should have only a small distance to a white line on a black background with an orientation = — 6
but a large one to any black line on a white background. Therefore, the extremities of the half-torus
are linked in a continuous manner as shown in Fig. 4c. For a discussion of the orientation/phase
metric, we refer to [31].

Note that there are also some problems involved with filters realising the monogenic signal we
are using, as discussed in [28]. First, it turned out that for the monogenic signal it is more
difficult to construct filter which allow for stable orientation and phase estimates at high frequencies
(compared to, e.g., Gabor wavelets) Second, in the monogenic filter approach there is only one
orientation estimate and one phase (in connection to the one orientation) estimate. However, for
intrinsically two dimensional signals such as corners and most textures more parameters are needed
to represent the local structure (e.g., most textures are characterised by multiple orientations at
different frequencies). Third, estimates for, e.g., optic flow can profit from averaging processes
over estimates over different orientations. However, in the context of intrinsically one dimensional
structures the monogenic signal allows for a good representation.

The application of such a spherical quadrature filter for the processing of our primitives has two
main advantages:

1. It allows us to use general advantages of the analytic signal (the aforementioned split of
identity, see [29]). Hence, phase is an immediate output of the spherical quadrature filter
processing and can directly be used as an attribute that describes the structural information
of an oriented image structure (see Fig. 4a).

2. Compared to the use of a Gabor wavelet transform (see, e.g., [?]), we do not need to sample
across different orientations: orientation is a direct output of the computation. Hence, we
only need to apply 3 filter operations compared to, e.g., 16 for Gabor wavelets (see, e.g., [9]).

We compute filter responses for three different scales, indicated hereafter by the peak frequency of
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the associated filter operations. 2 Fig. 3 shows the filter responses in terms of the local amplitude
m(x), orientation f(x) and phase ¢(x), alongside the resulting primitives, for three scales.

2.3 Optic flow and colour

Besides orientation, phase and the intrinsic dimensionality confidences, colour and local optic flow
are also associated to the primitive description vector. Kalkan and colleagues [24] compared optic
flow algorithms performance depending on the intrinsic dimensionality, i.e. , the effect of the
aperture problem and the quality on low contrast structures. It appears that different optic flow
algorithms are optimal in different contexts. In our system, we primarily use the Nagel-Enkelmann
algorithm [33] since it gives stable estimates of the normal flow at id1l structures. We denote the
optic flow computed at a position x by f(x).

Colour is not processed by filtering operations but sampled (i) on each side of a step edge, or (ii)
on each side of a line and on the line itself, depending if the phase describes a step edge or a line
structure.

3 Condensation scheme

Based on the pixel-wise processing described in section 2, we now want to extract a condensed
interpretation of a local image patch by selecting a sparse set of points to which visual modalities
become associated. An important aspect of the condensation scheme is that all main parameters
can be derived from one property of the basic filter operations called line/edge bifurcation distance.

Definition 1 The line/edge bifurcation distance dip for a given scale is the minimal distance
between two edges for them to produce two distinct amplitude maxima.

Hence, a double edge will be represented by a pair of edge primitives if its width is larger than
djep, by only one line primitive otherwise. Fig. 5a shows a narrow triangle for which two edges get
closer until they meet. Vertical sections of the local local amplitude (Fig. 5b) close to the vertex
have only one maximum, that splits into two distinct maxima further away from the vertex, where
the distance between the two edges is larger.

Using definition 1 we propose a condensation procedure in three steps: 1) Sampling: the positions of
features are computed with sub—pixel accuracy, according to the local intrinsic structure (section
3.1); 2) Elimination: positions that are too close to each other (and therefore would lead to
redundant descriptors) are disregarded (section 3.2); 3) Local interpretation: semantic attributes
become associated to the computed positions (section 3.3).

Fig. 5c,d, and e, show the primitives extracted after condensation for the three scales used in the
present paper — for peak frequencies of 0.11, 0.055 and 0.027, respectively.

3.1 Sampling

In section 2.1, it was discussed that the concept of position is different for different type of image
structures as defined by the three classes of intrinsic dimensionality. The coding of intrinsic di-
mension by three values (c¢;q0(), ciq1(x), cig2(x)) allows us to select the most likely structure for
this patch, and thence to define an appropriate (according to its intrinsic dimension interpretation)
position candidate. However, if we do not want to make a decision about the type of local image

ZNote that step edges have high amplitudes across scales, whilst line structures are represented as a line at coarse
scales, and as two step—edges at fine scales, (see section 3 and [32]).
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(a) original image (b) local amplitude

(e) peak frequency 0.027

Figure 5: Definition of the elimination parameters dje; and di. See text.

k1(1)22)33)44)

Figure 6: (a) Hexagonal sampling: each hexagon is embedded in a disk A(4,7), with a radius rs.
(b) Three possible hypotheses for positions according to the three different intrinsic dimensions
(see section 3.1). (c) Because the disks A%! overlap, the same position can be found in areas with
different index. For these redundant structures, one sample needs to be deleted (see section 3.2.1).
(d) Since the local amplitude can still be high for pixels with a certain distance from high contrast
structure, an elicited position P2 may not lie on the edge structure. These positions are redundant
since the structure that induced them is already more accurately represented (in terms of position)
by other primitives. Therefore, these positions are also disregarded (see section 3.2.2).
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Table 1: The scale-dependent parameters of our representation.

Peak frequency (pixels™') fr 0.1103 0.0551 0.0275
Wavelength (pixels) A 9.06 1812  36.25
Number of tabs n¢ 11 23 33
Line/edge bifurcation (pixels) diet 3 6 7.5
Hex. grid spacing in z (pixels) | dg = 0.85djes 2.55 5.1 6.37
Hex. grid spacing in y (pixels) | dy, = v/3/2d, 2.21 4.42 5.52
Influence radius (pixels) dr = 2.2djeb 6.6 13.2 16.5
Condensation rate deo 85% 94% 97%

structure at such an early stage we can also code the three different candidates according to their
intrinsic dimension class (see Fig. 6b). These two approaches are implemented by two different
modes of the condensation algorithm with different advantages and disadvantages (see below).

To get candidates for our primitives, we first perform a hexagonal sampling (see Fig. 6a) of the
image into overlapping areas A1) with radius rs, with k,I coding the hexagonal grid points.
Hexagonal sampling has a number of advantages discussed for example in [34,35]. In the context of
this paper, the most important difference with rectangular sampling is that the distance between
the centres of neighbour tiles is uniform in an hexagonal grid while in a rectangular grid diagonal
spacing is v/2 times longer than horizontal or vertical. Since we want to extract symbolic descriptors
for each tile, the hexagonal sampling allows for a more evenly distributed symbolic description and
reflects more closely the isotropic structure of the original image filters. The parameters d, and
dy = @dw determine the spatial distance in  and y between the centre Agk’l) of the tile A% and
the centres of the neighbour tiles.> For a description of the mathematics of hexagonal sampling we
refer to, e.g., [34].

The optimal sampling distance d,, is related to the line/edge bifurcation distance d;., — see Fig. 5c,
d and e. It turned out that a reasonable estimate for dj, is:

1

37]0;07 (1)

diep =

hence, we set d, = round(dje;) + 1 to be the smallest possible sampling distance within which
structures based on the amplitude information can be resolved. Because the line/edge bifurcation
distance djc, depends on the peak frequency f,,® so does the sampling distance. All frequency
dependent parameters are shown in table 1:

We search on a disk around each Agk’l) for candidate primitives positions. The radius 7 of this disk
is chosen such that each point of the image is covered by at least one of the disks. In a hexagonal

grid, the maximum distance to a tile’s border is %dw hence we set

2
rs = round(——=d;) + 1 (2)

V3

We then look for optimal structure dependent primitive positions inside each tile, distinguishing
between the three intrinsic dimension’s classes:

3Note that the odd rows have an onset of dz/2
“note that it is also related to the spatial size, the filter’s band-width B, and the minimal number of tabs n,
needed to represent the filter, for a detailed discussion see [28].
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3.1.1 Homogeneous image patches (id0)

At homogeneous image patches, the position cannot be defined by properties of the local signal
since it is constant. Therefore, the position ml(s(’)l) of a primitive representing an image patch A%

is defined by equidistant sampling (see Fig. 2.1a):

k.l
“f'gdo) = AR, (3)

This is illustrated in Fig. 7b.

3.1.2 Lines and edges (id1)

For a line or edge, the position :cESi” can be defined through energy maxima that are organised

as a one—dimensional manifold. Therefore, an equidistant sampling along these energy maxima is
appropriate (see Fig. 2.1b). For this, we look within the area AD

a line orthogonal to the orientation at Aﬁ’“’”:

for the energy maximum along

i) = max m(z), (4)

xeg(kvl)

where g is a local line going through Agk’l) with orientation perpendicular to H(Agk’l)). This is

illustrated in Fig. 7c.

(k,0)

3.1.3 Junction-like structures (id2)

For a junction, the position :L'Esél) can be defined unambiguously as the maximum of the i2D

confidence in a local region (see Fig. 2.1c and [27]):

2y = max{cin (). (5)
This is illustrated in Fig. 7d. °

Our system runs in two modes. In the first mode, hereafter named complete mode, all three
hypotheses are conserved (see Fig. 6b). However, the position corresponding to the maximum
of three confidences (ciq0(), ciq1(x), cig2(x)) is called the reference position 2®D and is used
thereafter, in the reduction of redundant descriptors, to compete with proximate candidates. In
the second mode, named contour mode, we only look at intrinsically one—dimensional signals, i.e. ,
we do the positioning according to Fig. 2.1b. The first mode allows for a complete representation of
the signal by also taking into account id0 and id2 structures. However, symbolic representation and
3D reconstruction of id0 and id2 signals are ongoing research topics (see, e.g. [25,26]). In the second
mode, the primitives symbolic representation, 3D reconstruction (see section 4), and structural
relations (such as co—colourity, symmetry and co—planarity), are well defined (see section 5.1).

All positions are computed with sub—pixel accuracy using the formula:

Ty = % Do g 2ge i, M@0 + 1, Y0 + J) (w0 + 9), (©)
Jo = 55 2im—w, 2jm—w, M@0 + 450 + ) (Yo + 1),

®Note however, that it is well know that for energy based junction detectors there is a systematic bias towards the
inside of the junction (see, e.g., [?]). In [?,18], we show that by making use of model knowledge (i.e., understanding
junctions as points in which lines intersect), a more precise localisation can be ensured.

10
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with m(z,y) being the local amplitude at pixel position (x,y) and

1
Doty 2je (0 + Y0 + )

Sg:

(7)

where wy is set to wg = djep. In section 3.3, the extracted features phase and orientation are com-
puted at the sub—pixel position, using bi-linear interpolation. Fig. 7b,c,d, show the positions found
for different intrinsic dimensions; Fig. 7e,f,g, show the primitives for those locations; Fig. 7h,i,j,
show the primitives extracted, in contour mode, with an origin variance > 0.3 and a line variance
< 0.3 are shown for the three scales considered in this work: namely for peak frequencies of 0.110
(Fig. 7h), 0.055 (Fig. 7i), and 0.027 (Fig. 7j). Different scales highlight different structures in
the scene. Furthermore, a lower peak frequency removes image noise and generates less spurious
primitives, whilst smaller structure of the image is become neglected — see [32,36] for a discussion
of the effect of scale in edge detection.

We evaluated the accuracy of the primitive extraction on a synthetic image pair, featuring a red
circle on black background, and recorded the results in Fig. 8. The top images compare the
primitives extracted with (left) and without (right) the sub-pixel localisation of the primitives.
Note that the sub—pixel localisation implicitly assumes a symbolic interpretation of the primitive
since it associates a meaning to a position (see also the discussion in section 6). Hence, we mainly
consider id1 primitives in the following. Effectively we only considered primitives with an origin
variance larger than 0.3 and a line variance lower than 0.3. The top images in Fig. 8a show the 2D—
primitives extracted and the bottom ones show the 3D—primitives reconstructed using stereopsis.
The 3D—primitives are shown from front and side views to illustrate the quality of the depth
reconstruction. It is visible in these graphs that the accuracy of 3D reconstruction is greatly
improved by a sub pixel localisation of the primitives. The accuracy of the reconstruction decreases
towards horizontal primitives due to the inaccuracy of stereo—matching on lines parallel to the
epipolar geometry.

Different levels of Gaussian noise were applied to the images, and the accuracy of the extracted
primitives were recorded in the graphs 8 (b), (c), (d) and (e). The solid lines show values with sub—
pixel accuracy and the dashed ones without. In graph (b) the density of the primitives extracted
depending on the noise is shown. As noise tends to increase the line variance in an image patch, less
i1D primitives become extracted with larger noise levels. The nect graphs chart the localisation
(c), orientation (d) and phase (e) errors for different noise levels. As a summary these results show
that sub—pixel localisation provides significantly better accuracy, both for 2D—primitives and for
3D reconstruction.

3.2 Elimination of redundant descriptors

Since areas A®D are overlapping, the process described above can lead to identical positions found
in neighbouring areas: in Fig. 6¢, the putative positions &(>1) and 31| elicited by two distinct
hexagonal cell, represent the same image location. Moreover, the filters spatial extension can lead
to proximate positions describing essentially the same image structure (see Fig. 6d, Y and
w(S,l))'

Therefore we apply an additional process where these redundant descriptors become eliminated.
This elimination process faces the following challenges:

e Proximate, yet distinct, putative positions should be preserved. For example, in the triangle
in Fig. 5 two edges converge. At some point, these edges become interpreted as a line and the
position should be on this line and the phase should become 0 or 7. Until then, the triangle

11
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(a) original image (b) id0 locations

(h) peak frequency 0.110 (i) peak frequency 0.055 (j) peak frequency 0.027

Figure 7: Top row: (a) one image of an object. The black square indicates some detail of the
image illustrated in figures (b,c,d,e,f,g); (b,c,d): positions associated to the primitives assuming
different intrinsic dimensionality (from left to right, (b) id0, (c¢) idl and (d) id2). Middle row
(e,f,g): primitives in each of those cases (from left to right, (e) id0, (f) idl and (g) id2). Bottom
row (h,i,j): primitives extracted (from the full image) in contour mode, with origin variance > 0.3
and line variance < 0.3, for different peak frequencies (from left to right, (h) 0.110, (i) 0.055, and
(i) 0.027).
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Figure 8: Inset: the pair of synthetic images used for this measurement. (a) 2D— and 3D—primitives
extracted from the inset images, respectively with (left) and without (right) sub—pixel localisation.
(b,c,d, and e): report the density and accuracy in localisation, orientation and phase of the primi-
tives. The horizontal axis shows the noise level (a noise level of 1 stands for 100% Gaussian noise)
added to the image prior to primitive extraction. The solid line shows the accuracy with sub—pixel
localisation and the dashed line without. Error bars in (c,d, and e) show the variance.
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Figure 9: Artificial sequence used to evaluate the accuracy of primitive extraction (see Fig. 8).

should be represented by two edges with phase 7. Hence, the elimination process should
not eliminate these ‘independent’ edges although they can be rather close to each other. The
limit of separability is the line/edge bifurcation distance dj.;, defined above.

e Distant, yet redundant, putative positions should be discarded. Due to the kernels spatial ex-
tent, a given image structure will generate significant response within a radius di, that is larger
than djep. As a consequence, eliminating candidates closer than dj.; preserves all distinct edge
structures, plus numerous redundant structures. Conversely, eliminating candidates with a
distance smaller than d; discards all redundant, plus some distinct structures.

We tackle this problem by a two stage elimination process described in sections 3.2.1 and 3.2.2.

3.2.1 Elimination based on the line/edge bifurcation distance dj,

First, all candidates 2*) become ordered according to the associated amplitude m(z¥). Start-
ing with the candidates with highest local amplitude, we discard all other candidates *"") within
a radius dj.6 Since we order the candidates according to the local amplitude, a candidate cor-
responding to a stronger structure suppresses candidates with weaker structure. Thereby, all
non—distinct edges (according to the line/edge bifurcation distance) become deleted but redundant
edges are still being preserved. In Fig. 10b, we see that many spurious candidates remain after the
first elimination process that are caused by edges with distance smaller then dj (see section 3.2.2).

3.2.2 Elimination based on the influence radius d;

The local magnitude can be significantly affected by image structures within a radius di. In the
second elimination step, starting again from the candidates with the highest local amplitude, the
distance between pairs of remaining candidates is compared to dj, empirically approximated by
dy, = 2.2d;ep. For a pair of intrinsically two—dimensional structures it is sufficient to have a distance

5Note that for the quality of the process it is important that all positions are computed with sub-pixel accuracy
already at this stage.
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(a) Before elimination (b) Elimination using djep

o SR A S e SRR 2SR5 R
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(¢) Elimination using dj (d) Extracted primitives

Figure 10: Three stages of the elimination process and the final primitive representation.

smaller than dj, since they naturally represent maxima in the amplitude representation [27]. For
an intrinsically one—-dimensional structure, there will be a slant in the local amplitude surface at the
redundant structure reaching its maximum at the edge/line structure and decreasing with distance
from the edge (see Fig. 5 and Fig. 11). This slant can be checked to distinguish spatially close
yet independent structures, that we want to keep, and nearby redundant structures, that we want
to discard: For each candidate in a pair with distance smaller dj, we test whether the structure
is an amplitude maximum, along a line orthogonal to the local orientation (see Fig. 11). This is
achieved by comparing each candidate’s amplitude to its direct neighbours, on both sides of the
edge, as indicated by the local orientation.” Then, redundant structures, i.e. , candidates that are
not local maximum, are discarded.

The result of this second elimination stage is shown in Fig. 10c, and the resulting primitives in
Fig. 10d. Fig. 12 shows the primitives extracted for an artificial test image, for different scales. The
image in Fig. 12a shows vertically alternating black/white step—edges, getting narrower towards
the right of the image. The primitives extracted at the three scales, for peak frequencies of 0.110,
0.055 and 0.027, are shown in Fig. 12b, ¢ and d, respectively. The effect of the double elimination
process at different scales can be seen in this figure. For example if all of the narrower step edges
to the right of the image are distinctly extracted in Fig. 12b, only one of the two is extracted
in Fig. 12c, while in Fig. 12d the same edges become intrinsically two—dimensional and are not
extracted anymore.

3.3 Association of visual attributes and confidences

We then associate visual attributes to the remaining positions a’: orientation 6, phase ¢, and

optic flow f are computed pixel-wise using filter processes of spatial extent di. Since positions

"Note that the criterion ‘local maxima’ that is applicable for id2 structures can not be applied since edge like
structures form a ridge in the local amplitude surface (see Fig. 5).
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Figure 11: Extraction of redundant primitives due to the slant in the amplitude surface. (a) case
of a valid double edge, two primitives are correctly extracted; (b) case of an erroneous extraction
of a redundant primitive: because of the mild decay of the amplitude curve, the same structure
can cause the extraction of a primitive at a location far from the original structure, (where the
amplitude of the response there is still above a given threshold ¢).

\

N

(c) peak frequency 0.055 (d) peak frequency 0.027

Figure 12: Tllustration of the primitives’ sampling density: (a) shows an image with gradually
(from left to right) narrower white and black bars; (b,c, and d) show the primitives extracted for
different peak frequencies.
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(a) An edge primitive (b) A line primitive

Figure 13: Illustration of the symbolic representation of a primitive for a id1 interpretation, for (a)
a bright-to-dark step-edge (phase ¢ # 0) and (b) a bright line on dark background (phase ¢ # 7.
1) represents the orientation of the primitive, 2) the phase, 3) the colour and 4) the optic flow.

are computed with sub—pixel accuracy, we can also interpolate sub—pixel values for orientation,
phase, and optic flow using bi—linear interpolation. Let Zy and gy be the positions computed with
sub-pixel accuracy (see section 3.1); let J, and J, be the distance to the discrete lower pixels ;
and y;, and xp = 29+ 1 and y, = yo + 1; then the bi-linear interpolation computation leads to the
formula:

(&) = Oz y)(1 = 82) (1= 8y) + 01, yn) (1 = 6,) # 6 (8)
= é(l'ha yl)éx(l - 6y) + é(l’h, yh)(sx(sy (9)

Note that for the interpolation of orientation and phase, the specific topology of the orienta-
tion/phase space needs also to be taken into account. Hence, 6 is transformed such that the
distance between all pairs of the set é(a:l,yl), é(xl,yh), é(mh,yl), é(xh,yh) is smaller than 7 and
0(z) is in [0, ).

For the test picture shown in Fig. 8 we get a localisation error in the area of 0.1 pixel (i.e. im-
provement by a factor four). Bi-linear interpolation of orientation and phase, based on the the
sub-pixel positioning, leads also to improvements of a factor 2 and 6, respectively (on the highest
frequency level). The effect on reconstruction is also demonstrated in Fig. 8.

Although colour information is available at each pixel position, it is heavily redundant, especially
for id0 and idl signals. For a step-edge structure (3 < |p| < 2I) it is natural to distinguish
between the colour on each side of the edge (c;, ¢,) whilst for a line structure (|| < T or || > 2F)
the colour of a middle strip ¢, (i.e. on the actual line) should also be coded (see Fig. 5c—e and
13). We discussed in section 2.2, the phase can distinguish among these two cases.

Thus we obtain a parametric description of local image patches that we call primitive m;. For a

step—edge this representation is

™ = (xi, 0(x:), p(xi), (ci(®i), er(x:)), f(i)) (10)

and for line structures

™ = (i, 0(x:), p(xi), (ci(@i), em(i), e (24)), Flzi)) - (11)

The primitives’ parameters are explicit and the set of primitives provides a condensed representation
of the image. The condensation factor can be computed by the ratio of the number of bits needed
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to store the local image patch a primitive stands for. For the highest frequency, such a primitive
represents a local image patch of a radius of appr. 3 pixels (i.e. if one considers a RGB colour
image: 7-32-3 ~ 85 values). The primitive has a dimension of 10 for an edge like structure and 13
for a line-like structure (because optic flow encodes temporal information, it is disregarded). Thus,
encoding a primitive, at the highest frequency level, requires maximally 13 bytes, compared to 85
bytes in the original image, leading to a condensation rate of d., ~ 85%. Analogously, we get a
condensation rate of ~ 94% and =~ 97% for the other two frequency levels. Note when considering
3D-primitives (see section 4) the condensation rate further increases.

Table 1 shows all parameters included in the primitive extraction. Note that these parameters
are either derived from the line/edge bifurcation distance (djcp), non—critical (wg), or based on
decisions involving a trade off between computational complexity and precision (dy).

4 Computation of 3D—primitives

So far we have presented multi-modal image descriptors that code 2D information. However,
these descriptors represent visual events occurring at a certain 3D position in space. This depth
information is essential for higher level processes because of two reasons. First, humans and robots
act in a 3D world where depth information is valuable for, e.g., navigation or grasping. Second,
since many structural dependencies of visual events (e.g., rigid body motion) are working on 3D
structures, 3D information is essential their formalisation, and for the disambiguation processes
they underlie (see [15]).

In the following, we describe an extension of the image primitives to spatial primitives. Thus, the
semantic information coded in the image primitives is transferred into the 3D domain.

Given a pair of corresponding points (see [15]) between the left and right images, a meaningful
3D interpretation of this stereo—pair is a 3D point. Contours, however, hold a 2D orientation, and
therefore 3D—primitives need to encode the reconstructed 3D orientation ® beside the 3D position
X. This orientation is computed as the intersection of two planes in space, each defined by the
optical centre of one camera and the line in the image plane described by the image primitive’s
position and orientation — see Fig. 14. The intersection of these two planes in space is a 3D line
that provides us with the orientation of the 3D—primitive. In [37], it was shown that using line
correspondences for the reconstruction of 3D orientation was generally more accurate than point
correspondences.

Phase ® and colour C' are reconstructed in space as the mean value between the two corresponding
image primitives: ® = (o + %), and C = §(c" + cF)

Furthermore, these two modalities encode surface information (respectively contrast and colour
transition across an edge); thus, we need to define a 3D surface patch onto which these apply.
Unfortunately, it is not possible to reconstruct the exact surface from local information: for a pure
id1 signal, the surface on one side does not allow finding the additional correspondence that would
be required for the reconstruction of a 3D surface. Moreover, in case of a depth discontinuity, the
colour information might come from a 3D position that is completely independent from the 3D
orientation information (i.e. , the background).

We propose to define as a priori 3D surface the plane that is most stable under small viewpoint
variations (see Fig. 14). This surface is computed using the 3D orientation of the primitive and an
additional Local Surface Guess vector I', that is defined as follows:

I'=0 x Vi, (12)
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left

Figure 14: Illustration of the reconstruction of a 3D—primitive from a stereo pair of 2D—primitives.

such that the surface is normal to Vo, and V), is defined as follows:

Voo = 5 (CiX + TnX ). (13)

where Cp X and CrX are the two optical rays joining the location of the primitive X with the
optical centre of the left (Cp) and right (Cr) camera. The vector I" also identifies each side of the
3D line, which is critical for modalities like colour and phase that describe the modality transition
across the contour.

These allow reconstruction of spatial primitives I1(»J) each having the parametric description:

164 = (X,0,d,(C;,Cp, Cy)). (14)

The j index represents the alternative 3D entities generated from different stereo correspondences
in the right image to the i*" primitive in the left image. Since a final decision can usually not be
made solely based on local information, multiple hypotheses are kept at this stage. In the following
section, we will describe different approaches to overcome this ambiguity.

Fig. 8a, bottom, shows front and side views of the 3D primitives reconstructed with (left) and with-
out (right) sub—pixel localisation. The side view offers a better visualisation of depth estimation’s
quality.® It is visible in these images that the sub-pixel localisation of the primitives described in
section 3.1 allows for a notably better 3D-reconstruction. The effect of sub—pixel accuracy, for a
real scene, is illustrated in Fig. 15, where (a) and (b) show the stereo pair of images that were used,
(c) and (d) the 2D-primitives extracted from the left image, with and without sub—pixel accuracy,
and (e) and (f) the 3D—primitives reconstructed in both cases.

8Note that the accuracy of the depth estimates decreases for horizontal structures. This is due to the ambiguity
in reconstructing lines parallel to the epipolar line.
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Figure 15: Reconstruction of 3D-primitives in a real scenario. (a) and (d) show the pair of stereo

images, (b) (resp. (e)) the 2D—primitives extracted with (resp. without) sub—pixel localisation,
and (c) (resp. (f)) the spatial primitives reconstructed with (resp. without) sub—pixel localisation.

5 Applications

The primitive representation introduced in this paper has been applied in various contexts (briefly
described in this section) and has been part of three different European projects [38-40] in the area
of cognitive vision and robotics. The computation of the 3D primitives (this includes computation
of 2D primitives in a left and right image (512x512 pixels) as well as the stereo matching and the
reconstruction) takes currently between 1 and 2 seconds on a PCY.

The primitives described so far are condensed localised descriptors with explicit semantics, and
therefore, symbolic descriptors of a local scene structure. Since the primitives are processed locally,
they are necessarily as ambiguous as the locally computed modalities that they code. However, a
number of relations defined upon the primitives (described in the next sub—section) can be used to
disambiguate the local information using the global context.

5.1 Relations and operations defined on primitives

Since primitives are a symbolic description of local image patches, the relations and operations
defined on a primitive provides the context wherein information is processed. Here, we briefly
provide four definitions of primitives’ second order relations: collinearity, rigid body motion, co—
planarity and co—colourity (see also Fig. 16a).

9Computational time depends for example on the amount of primtives which depend on the image structure
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5.1.1 Good continuation (collinearity)

In [15], a measure of the likelihood for two 2D—primitives to belong to the same image contour
C(m;, ;) is defined (see Fig. 16a,i). This allows for the definition of a stereo constraint (see,
e.g., [41,42]) that makes use of local image information (as encoded by the primitives) as well as
contextual information gathered from other primitives in the vicinity (see [15]). The collinearity
constraint can naturally be extended to 3D-primitives (C(I;,II;)) by applying the following rule:

C(Hi,P’ Hj,q) = C(m;, 7Tj) A C(Trp’ Wq)v (15)

where II; , and II; ; are the 3D-primitives reconstructed from the stereo pairs (m;, m,) and (75, 74),
respectively.

5.1.2 Rigid body motion

The change of position and orientation induced by a rigid body motion (RBM(II)) can be computed
analytically (see, e.g., [43]); phase and colour can be approximated to be constant (see Fig. 16a,iv).
In [?] we used a simple scheme to track primitives over time (using the optic flow information)
and used it to estimate the camera motion from our visual representation, assuming the absence
of independently moving objects.

5.1.3 Co—planarity

The relation co-planarity Cop(Il;,II;) between two 3D-primitives (see Fig. 16a,ii) indicates the
likelihood of these two primitives to be part of the same surface (see section 5.4) and suggests a
way to grasp the object the primitives’ pair belongs to (see section 5.3).

5.1.4 Co—colourity

The relation co—colourity (see Fig. 16a,iii) expresses the similarity between two primitives’ colour.
10

Semantic relations are used at a stage of processing after the condensation step (called early
cognitive vision in [6]), in the following manners:

e predictions between visual events become formulated (such as the change of a local image
patch under motion or the likelihood of being part of the same collinear group) and by that
the locally ambiguous information becomes, disambiguated (see [15]),

e sets of primitives can become connected to higher visual entities such as 3D surfaces (section
5.4) and objects (section 5.2),

e low—order combinations of primitives become associated to robot actions such as grasping
(section 5.3).

0For each primitive only the colour component on the inner side of the surface defined by the pair of primitives
is considered.
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a) Operations and Relations Object Learning

i) Collinearity ii) Co-planarity

AT
s
motion

Grasping-hypotheses
ii)

Figure 16: (a) Relations defined on the multi-modal primitives (b) Extraction of object represen-
tations. (c) Grasping options generated by second order relations of primitives. i) Three of the
elementary grasps that can be inferred from one pair of co-planar primitives (identified by the two
red dots on the object). ii) left: One synthetic scene; right: the 3D—primitives reconstructed and
three examples of the grasps inferred by the system described in [44]. (d) Depth predictions based
on co—planarity relations (note since in the stereo images occur rather large disparities there is a
certain amount of outliers which however do not effect the surface prediction).
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5.2 Object model learning

Our visual representation was used to learn object shapes. The object is manipulated by a robotic
arm in front of a pair of stereo cameras. Since the motion of the robot arm is known, and the
stereo and robot system are properly calibrated, we can use the RBM relation described above to
track 3D—primitives describing the object held by the arm in a robust manner. Thus, we can infer
that 3D—primitives that do not move according to the motion of the arm are therefore not part
of the manipulated object. Furthermore, object features that were not initially observed can be
added to the object representation. Therefore, this algorithm allows us to:

e remove spurious 3D—primitives from the object model, and
e complete the object model using information from all available viewpoints.

Assuming that the arm’s motion spans adequately the object’s pose space, a full 3D model of the
object can be generated by this procedure [16].

This is illustrated in Fig. 16b), where i) shows the robotic setup holding a pan-like object. The
green dots show the 3D—primitives that were successfully tracked over time, whilst red and black
dots show the primitives that were not. On the right hand side, the learnt object model is shown,
from a different viewpoint.!’ Then panels ii) and iii) show the shape model obtained for two
different objects.

5.3 Generating grasping hypotheses

Our representation has also been used to define grasping options in a scene (see Fig. 16¢) and [44]).
Essentially, co—planar primitives (supported by the relations collinearity and co—colourity) define
planes that are good candidates for an initial grasping hypothesis. Fig. 16¢,i) shows three examples
of grasping hypotheses generated from a single pair of co-planar 3D—primitives. Fig. 16¢,ii) shows,
on the left, one image from a scenario created using the grasping simulation software Grasplt, that
was also used for the evaluation of our approach (for details, see [44]). On the right, we see the
3D-primitives reconstructed from this scene, alongside three of the candidate grasps generated by
our system on this scenario (shown from a different viewpoint than the image).

If evaluated as successful by haptic information, such a grasping action gives the physical control
over objects required for the object learning sketched in section 5.2. This provides a robot with
a basic exploratory behaviour: 1) try to grasp at the (unknown) environment; 2) if successful,
manipulate the object; 3) learn a full 3D representation of the object.

Such a behaviour enables a naive robot to progressively learn an internal representation of the
world with only minimal prior world knowledge. This is relevant in the context of the European
project PACO+ [38].

5.4 Depth prediction at homogeneous image areas

The primitives introduced here represent idl structures. It is known that it becomes increasingly
difficult to find correspondences between local patches the more they lack structure (i.e. tending
toward the idO corner of the iD triangle, see Fig. 2.1). On the other hand, it is known that lack of
structure also indicates lack of a depth discontinuity [25,45]. Moreover, it was statistically shown
in [46] that co—planarity allows predicting depth at homogeneous image surfaces (see Fig. 16d).
Such a scheme can be used to ‘fill in” our representation at homogeneous surfaces using co—planar

1The gap in the representation, on the handle of the pan, is a part of the object occluded by the gripper. The
model could be completed by using at least one alternative grasp.
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relationship between id1 primitives: in Fig. 16d, the homogeneous primitives inferred using such a
scheme are shown with a red border on each predicted homogeneous primitive. One can see that
the whole road becomes inferred from the reconstructed lane markings. Note also that spurious
3D-primitives (reconstructed due to nearly horizontal structures in the images) do not generate
hypotheses due to their inherently random distribution.

6 Discussion

In this section, we give some information about the context of our representations in terms of their
role in a cognitive vision architecture and the biological analogy of a primitive to a hypercolumn
( [3]). Furthernore, we discuss the relation of our feature descriptor to other visual descriptors and
give some indications about current and future work.

6.1 Primitives as part of a cognitive vision system

The primitives introduced in this paper are one pillar in the Early Cognitive Vision paradigm
described in, e.g., [47], developed in the context of the European project ECOVision [39]. It is now
applied within two other European projects addressing higher level tasks such as scene interpreta-
tion in a driving assistance scenarios (Drivsco [40]) and cognitive robotics (PACO+ [38]). While in
the ECOVision project, the primitives were used for the disambiguation of local information and
outlier removal using contextual knowledge (see, e.g., [48]), in Drivsco we address general 3D scene
interpretation tasks such as the explicit structuring of visual information in terms of larger entities
and the linking of such entities to driving actions. We also address classical computer vision tasks
such as object model learning, pose estimation, and object recognition. In addition to these tasks,
in PACO+ we interface our representations with a robot’s actions [16] and with a high level plan-
ner [49]. The broad applicability of this representation stems from the ECOVision project’s goal
to develop a general vision machine, in analogy to the human visual system (see subsection 6.2).
In particular, we were interested in allowing for a semantic interpretation of visual scenes. For
this, we believe that a transition of the representation of visual information to a symbolic level is
required and that this transition is driven by the two properties Predictability and Condensation
mentioned in the introduction. This allows us to formulate strong and efficient predictions coded
in the relations described in subsection 5.1 that can be used to disambiguate the information as
well as to bridge to higher level representations of objects and relations of objects to actions.

The transformation of visual information to a symbolic level as done in the condensation process
described in section 3 can be motivated by three drawbacks of pizel-wise interpretation of visual
sub—aspects such as orientation, phase, and optic flow (a more detailed discussion is given in [50]).

6.1.1 Low predictability

Disambiguation requires predictions of events as a consequence of other events. In [14], we showed
that predictability on the pixel level is weaker than on a level where attributes with richer semantic
content are computed. For example, certain Gestalt laws such as collinearity and parallelism can
only be found in visual data when making use of orientation instead of the actual pixel value [11-13].
Going beyond, we showed in [51] that the statistical dependencies of local line segments correspond-
ing to these Gestalt laws become much more pronounced within our multi-modal representation.
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6.1.2 Ill-defined semantic of features associated to position

The computation of a feature descriptor is based on information that covers a larger spatial area.
For example, to estimate orientation we need at least three samples. In general, depending on their
bandwidth, filters cover large spatial areas to achieve higher precision of estimates. Therefore local
orientation’s estimation from linear filters suffers from the superposition of the true orientation with
values from other structures in the vicinity, that become more prominent with the distance. Hence,
the orientation computed close to an edge still depends on this edge but also on other surrounding
structures and therefore the orientation at a pixel position that is not located precisely on an edge is
ill-defined. As a consequence, beside the need to condense the image information for establishing
contextual processes, the features themselves need to be associated to discrete locations in the
image. Hence, in our representation, the primitives’ position is defined by a dynamic process, and
visual attributes are associated to this position.

6.1.3 Cross—connection of modality processing

Visual modalities’ processing can be supported by cross—connections between modalities. For ex-
ample, a reasonable colour coding depends on the orientation and phase. Since a step edge distin-
guishes between two areas of different colour it makes sense to code these two values separately. On
the other hand, for a line-like structure there are three areas we need to distinguish (see Fig. 13).
Therefore, we need to understand the feature extraction process as a recurrent process wherein the
computation of individual modalities interact with each other. By using the primitives, we make
use of such cross—connections for example for colour and depth processing (see section 5.4).

6.2 Biological analogy

Primitives have a direct biological analogy, discussed in detail in [52], that we will summarise here.
The main information stream in the human visual system projects to area V1 in the cortex [53].
The structure of V1 has been investigated by Hubel and Wiesel in their ground-breaking work [1,3].
V1 is organised as a retinotopic map that has a specific repetitive pattern of substructures called
hyper—columns. Hyper—columns themselves contain so called orientation columns and blobs which
are mainly involved in colour processing. However, in an orientation column, we find cells sensitive,
beside orientation, to disparity [5,54], local motion [55], colour [3], and phase [56]. Also specific
responses to junction-like structures could be measured [4]. Therefore, it is believed that V1
processes local feature descriptions, analogous to the primitives which can be regarded as functional
abstractions of hypercolumns. Moreover, there is a high (feed—forward and feedback) connectivity,
within V1 and towards other visual areas. This is thought to be the basis for the processing of
contextual information [53]. Such connectivity is analogous to the contextual information gathered
from the primitives’ relations defined in 5.1.

6.3 Relation to other local descriptors

Feature extraction from images is the combination of two distinct, yet dependent, processes (see,
e.g., [57,58]): first comes the detection of interest points, which are locations in the image likely
to contain information (this is required to obtain a sparse feature map); second, the information
encoding at these locations into feature descriptors. There has been a large amount of work on
both of these aspects.

A prominent example of an interest point detector is the Harris corner detector [59], and the
scale adapted Harris—Laplace detector proposed by [58], which extract features at locations that

25

180



have maximal local variations in space. This can be compared to the concept of intrinsically
two—dimensional points presented in section 2.1. Edge detectors, like Canny’s classical algo-
rithm [60], zero—crossings [7], or phase congruence [30], return edge pixels (similar to intrinsically
one—dimensional points in section 2.1). The Hessian—Laplace, localise points in space at the local
maxima of the Hessian determinant and in scale at the local maxima of the Laplacian of Gaus-
sian. This detects blob—like structures, that could be compared to intrinsically zero—dimensional
structures presented in section 2.1.

The extracted features should be robust (ideally invariant) under illumination and viewpoint
changes, while remaining distinct. In other words, an ideal feature descriptor allows for a metric
such that: features extracted from the same 3D area under different perspectives are proximate,
and features originating from different 3D areas are distant. Although it has been shown that such
a metric, in the general case, do not exist [61], the recent years have seen the development of ro-
bust and affine invariant descriptors. In particular, it has been shown that SIFT features [62], and
derivatives such as GLOH [58], are very efficient for a large set of matching tasks including: multiple
view reconstruction [63], object recognition [62], pose estimation [64], and image retrieval [65].
However, although we recognise the importance of invariance in computer vision, this is not the
primary motivation for our representation, but rather our goal is to initiate a process wherein
scene structures’ geometric and appearance information become represented explicitly in terms of
local symbolic descriptors and by semantic relations between them, both in 2D and 3D. Thus we
intent to bridge the gap between early image processing and higher stages of visual and cognitive
processing that require an abstract symbolic description of the world, as addressed, e.g., in the
EU-projects Drivsco [40] and PACOplus [38]. Because our representation’s explicitness, we are
able to use the necessary structural knowledge for object’s and action’s representation. In this
context, our scene representation based on multi-modal primitives addresses a number of issues in
an original way:

6.3.1 Multi-modality
primitives cover the main visual modalities established in computer— and human vision and, hence,
carry a rich semantic interpretation expressed in local symbols and their relations.

6.3.2 Condensation

primitives reduce the dimensionality of image data while preserving its significant aspects (e.g.,
in [66] we showed that primitives allowed for matching performance comparable to normalised
cross—correlation).

6.3.3 Different experts for different structures

the interpretation of the local signal by primitives is not static but depends on the intrinsic signal
structure, leading to a system of different experts for different signal structures, such as edges,
lines, homogeneous patches and corners (as in the human system).

6.3.4 Primitives initiate disambiguation

primitives are not a final statement about a scene’s local structure; indeed the confidence associ-
ated to each primitive as well as its parameters can become modified in disambiguation processes
formalising contextual information.
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Figure 17: Impulse responses of the DOP filter and its Riesz transforms. From left to right: DOP
filter, first Riesz transform, second Riesz transform. From top to bottom: scales (1,2), (2,4), (4,8).

6.4 Current and future work

Currently, our system treats different scales independently; this is appropriate since so far we only
deal with edge-like structures, that show stable properties across scales. Nevertheless, selecting the
optimal scale of processing would reduce memory and computational requirements while improving
the overall robustness of the edge representation. An extension of our approach into scale—space
where scale itself expressed by a feature (see, e.g., [32,36,67]) is being considered.

Furthermore, we intend to introduce symbolic descriptors for different (other than edge) image
structures. For homogeneous image patches this has been already discussed in section 5.4. In [26],
we have discussed an extension of our approach to junction—like structures. We note that this
requires not only a junction detection and interpretation algorithm but also the definition of ap-
propriate relations between different junctions as well as between edges and junctions. We are also
currently doing the first steps towards the representation of texture which in particular requires a
representation of different scales.
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A Split of identity

Quadrature filters based on the monogenic signal [27] are rotation invariant, i.e. they commute
with the rotation operator. Hence, for an appropriate choice of polar coordinates, two coordinates
do not change under rotations (amplitude and phase), whereas the third coordinate directly reflects
the rotation angle. This kind of quadrature filter, which is called spherical quadrature filter [19],
is formed by triplet of filters: a radial bandpass filter and its two Riesz transforms [21]. As in [19]
we construct the bandpass filter from difference of Poisson (DOP) filters, in order to get analytic
formulations of all filter components in the spatial domain and in the frequency domain. The DOP
filter is an even filter (w.r.t. point reflections in the origin) and its impulse response (convolution
kernel) and frequency response (Fourier transform of the kernel) are respectively given by:

he(a) = e S (16)

2m (|2 + s2) 2m(|z|2 + 52)

3 3
2 2
He(u) = exp(~2rlulsy) — exp(~2nlulss) . (17)

For convenience, we combine the two Riesz transforms of the DOP filter in a complex, odd filter,
yielding the impulse response and the frequency response:

ho(m) = x+ixy T tix (18)
° on(|z|2 +s2)7  2n(|lzf2 + 2)3
1 2
U9 — U
Ho(u) = = (exp(=2nluls:) - exp(=2nluls2)) . (19)

respectively. The impulse responses of the filters for (si,s2) = (1,2),(2,4),(4,8) are shown in
Fig. 17.

The split of identity (i.e. the separation of the signal into local amplitude, orientation and phase)
is obtained by switching to appropriate polar coordinates. In particular, we transform the filter
responses according to

m(x) = VI(x)? + |L(z)] (20)
O(x) = argl,(x) (mod ) (21)
plx) = sign(S{lo(e)}) arg(le(®) + il lo(2)]) (22)

which gives the desired amplitude, orientation, and phase information.

Fig. 18 shows a radial cut through the DOP bandpass filters for a certain range of scales and
their superposition, demonstrating a homogeneous covering of the frequency domain. For infinitely
many bandpass filters, the superposition is one everywhere, except at the origin. In our system,
we apply filters on three frequency levels (see Fig. 17). The applied bandpasses are indicated by
the darker colour in Fig. 18.

The local orientation associated to the image patch is described by 6(). The orientation parameter
0 and the phase parameter ¢ can take values in [—m, ) (see figure 4). However, this would lead to
a redundant representation since, e.g., a horizontal dark/bright edge can be interpreted as an edge
with orientation 7/2 and phase /2 but also as a bright /dark edge with orientation 3/27 and phase
—m/2. A parametrisation of orientation between [0, 27) is usually refered to as direction. However,
direction can not be unambiguously estimated locally (see [29,31]). Therefore, we restrict the
orientation values to [0,7). Another problem, that becomes apparent in Fig. 4 is the singularity
in orientation for phase ¢ = 0 and ¢ = —n. Indeed, all orientations are valid close to those
singularities. The deeper reason for that is (see IEEE, overcomed by averaging).
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Figure 18: DOP bandpass filters and their superposition approaching the identity (x—axis repre-
senting the frequency). The superposition and the filters applied in this paper are indicated by the
darker lines.
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Abstract

A novel method is introduced for optimal estimation of rigid camera motion from instantaneous velocity measurements. The error
surface associated with this problem is highly complex and existing algorithms suffer heavily from local minima. Repeated minimization
with different random initializations and selection of the minimum-cost solution are a common (albeit ad hoc) procedure to increase the
likelihood of finding the global minimum. We instead show that the optimal estimation problem can be transformed into one of arbitrary
complexity, which allows for a gradual regularization of the error function. A simple reweighting scheme is presented that smoothly
increases the problem complexity at each iteration. We show that the resulting method retains all the desirable properties of optimal
algorithms, such as unbiasedness and minimal variance of the parameter estimates, but is substantially more robust to local minima.

This robustness comes at the expense of a slightly increased computational complexity.
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